首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brilliance of terbium : Heterodimeric conjugates of trimethoprim covalently linked to sensitized terbium chelates bind to Escherichia coli dihydrofolate reductase fusion proteins with nanomolar affinity (see picture). Terbium luminescence enables sensitive and time‐resolved detection of labeled proteins in vitro and on the surface of living mammalian cells.

  相似文献   


2.
3.
Multimodal bioprobes, which integrate the advantages of different diagnostic modes into one single particle, can overcome the current limitations of sensitivity and resolution in medical assays and significantly improve the outcome of existing therapeutics. Lanthanide‐doped inorganic multimodal bioprobes, which are emerging as a promising new class of optical/magnetic multimodal bioprobes, have been long sought‐after and have recently attracted revived interest owing to their distinct optical and magnetic properties. In this concept article, we introduce the controlled synthesis of lanthanide‐doped inorganic multimodal bioprobes, including core–shell structured and single‐phase nanoparticles, and demonstrate different design strategies for achieving dual‐modal functionalization of nanoprobes. In particular, we highlight the most recent advances in biodetection, bioimaging, targeted drug delivery, and therapy based on these nanoparticles.  相似文献   

4.
5.
The detection of circulating tumor cells (CTCs) is crucial to early cancer diagnosis and the evaluation of cancer metastasis. However, it remains challenging due to the scarcity of CTCs in the blood. Herein, we report an ultrasensitive platform for the direct detection of CTCs using luminescent lanthanide nanoprobes. These were designed to recognize the epithelial cell adhesion molecules on cancer cells, allowing signal amplification through dissolution‐enhanced time‐resolved photoluminescence (TRPL) and the elimination of short‐lived autofluorescence interference. This enabled the direct detection of blood breast‐cancer cells with a limit of detection down to 1 cell/well of a 96‐well plate. Moreover, blood CTCs (≥10 cells mL?1) can be detected in cancer patients with a detection rate of 93.9 % (14/15 patients). We envision that this ultrasensitive detection platform with excellent practicality may provide an effective strategy for early cancer diagnosis and prognosis evaluation.  相似文献   

6.
7.
8.
A lanthanide‐complex‐based ratiometric luminescence probe specific for peroxynitrite (ONOO?), 4′‐(2,4‐dimethoxyphenyl)‐2,2′:6′,2′′‐terpyridine‐6,6′′‐diyl]bis(methylenenitrilo)tetrakis(acetate)‐Eu3+/Tb3+ ([Eu3+/Tb3+(DTTA)]), has been designed and synthesized. Both [Eu3+(DTTA)] and [Tb3+(DTTA)] are highly water soluble with large stability constants at ≈1020, and strongly luminescent with luminescence quantum yields of 10.0 and 9.9 %, respectively, and long luminescence lifetimes of 1.38 and 0.26 ms, respectively. It was found that the luminescence of [Tb3+(DTTA)] could be quenched by ONOO? rapidly and specifically in aqueous buffers, while that of [Eu3+(DTTA)] did not respond to the addition of ONOO?. Thus, by simply mixing [Eu3+(DTTA)] and [Tb3+(DTTA)] in an aqueous buffer, a ratiometric luminescence probe specific for time‐gated luminescence detection of ONOO? was obtained. The performance of [Tb3+(DTTA)] and [Eu3+/Tb3+(DTTA)] as the probes for luminescence imaging detection of ONOO? in living cells was investigated. The results demonstrated the efficacy and advantages of the new ratiometric luminescence probe for highly sensitive luminescence bioimaging application.  相似文献   

9.
Lanthanide (Ln3+)‐doped luminescent nanoparticles (NPs) with emission in the second near‐infrared (NIR‐II) biological window have shown great promise but their applications are currently limited by the low absorption efficiency of Ln3+ owing to the parity‐forbidden 4f→4f electronic transition. Herein, we developed a strategy for the controlled synthesis of a new class of NIR‐II luminescent nanoprobes based on Ce3+/Er3+ and Ce3+/Nd3+ co‐doped CaS NPs, which can be effectively excited by using a low‐cost blue light‐emitting diode chip. Through sensitization by the allowed 4f→5d transition of Ce3+, intense NIR‐II luminescence from Er3+ and Nd3+ with quantum yields of 9.3 % and 7.7 % was achieved, respectively. By coating them with a layer of amphiphilic phospholipids, these NPs exhibit excellent stability in water and can be exploited as sensitive NIR‐II luminescent nanoprobes for the accurate detection of an important disease biomarker, xanthine, with a detection limit of 32.0 nm .  相似文献   

10.
A new method is presented for preparing gram amounts of very small core/shell upconversion nanocrystals without additional codoping of the particles. First, ca. 5 nm β‐NaYF4:Yb,Er core particles are formed by the reaction of sodium oleate, rare‐earth oleate, and ammonium fluoride, thereby making use of the fact that a high ratio of sodium to rare‐earth ions promotes the nucleation of a large number of β‐phase seeds. Thereafter, a 2 nm thick NaYF4 shell is formed by using 3–4 nm particles of α‐NaYF4 as a single‐source precursor for the β‐phase shell material. In contrast to the core particles, however, these α‐phase particles are prepared with a low ratio of sodium to rare‐earth ions, which efficiently suppresses an undesired nucleation of β‐NaYF4 particles during shell growth.  相似文献   

11.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have shown great promise in bioapplications. Exploring new host materials to realize efficient upconversion luminescence (UCL) output is a goal of general concern. Herein, we develop a unique strategy for the synthesis of novel LiLuF4:Ln3+ core/shell UCNPs with typically high absolute upconversion quantum yields of 5.0 % and 7.6 % for Er3+ and Tm3+, respectively. Based on our customized UCL biodetection system, we demonstrate for the first time the application of LiLuF4:Ln3+ core/shell UCNPs as sensitive UCL bioprobes for the detection of an important disease marker β subunit of human chorionic gonadotropin (β‐hCG) with a detection limit of 3.8 ng mL−1, which is comparable to the β‐hCG level in the serum of normal humans. Furthermore, we use these UCNPs in proof‐of‐concept computed tomography imaging and UCL imaging of cancer cells, thus revealing the great potential of LiLuF4:Ln3+ UCNPs as efficient nano‐bioprobes in disease diagnosis.  相似文献   

12.
Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm?2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts.  相似文献   

13.
Stimulated emission depletion (STED) microscopy enables ultrastructural imaging of biological samples with high spatiotemporal resolution. STED nanoprobes based on fluorescent organosilica nanohybrids featuring sub‐2 nm size and near‐unity quantum yield are presented. The spin–orbit coupling (SOC) of heavy‐atom‐rich organic fluorophores is mitigated through a silane‐molecule‐mediated condensation/dehalogenation process, resulting in bright fluorescent organosilica nanohybrids with multiple emitters in one hybrid nanodot. When harnessed as STED nanoprobes, these fluorescent nanohybrids show intense photoluminescence, high biocompatibility, and long‐term photostability. Taking advantage of the low‐power excitation (0.5 μW), prolonged singlet‐state lifetime, and negligible depletion‐induced re‐excitation, these STED nanohybrids present high depletion efficiency (>96 %), extremely low saturation intensity (0.54 mW, ca. 0.188 MW cm?2), and ultra‐high lateral resolution (ca. λem/28).  相似文献   

14.
A nano‐coating associated with sulfuric acid leaching protocol was developed to prepare N‐doped sub‐3 nm Co‐based nanoparticle catalyst (Co?N/C) using melamine–formaldehyde resin as the N‐containing precursor, active carbon as the support, and Co(NO3)2 as the Co‐containing precursor. By thermal treatment under nitrogen atmosphere at 800 °C and leached with sulfuric acid solution, a stable and highly dispersive Co?N coordination structure was uniformly dispersed on the formed Co?N/C catalyst with a Co loading of 0.47 wt % and Co nanoparticle size of 2.55 nm. The Co?N/C catalyst was characterized with XRD, XPS, Raman, SEM, TEM, ICP, and elemental analysis. The Co?N/C catalyst showed extremely high catalytic efficiency with a TON of 257 for the aerobic oxidative coupling of aldehydes with methanol to directly synthesize methyl esters with molecular oxygen as the final oxidant. The Co?N/C catalyst also showed broad substrate range and stable recyclability. After recycling for 7 times, no obvious deactivation was detected. It was confirmed that the sub‐3 nm Co?N coordination structure formed between metallic Co nanoparticles and pyridinic nitrogen doping into graphitic layers functions as the active site to activate molecular oxygen for the β‐H elimination from generated hemiacetal intermediates to produce methyl esters. The nano‐coating associated with acid leaching protocol provides a novel strategy to prepare highly efficient non‐precious metal‐based catalysts.  相似文献   

15.
16.
Herein we report the development of a turn‐on lanthanide luminescent probe for time‐gated detection of nitroreductases (NTRs) in live bacteria. The probe is activated through NTR‐induced formation of the sensitizing carbostyril antenna and resulting energy transfer to the lanthanide center. This novel NTR‐responsive trigger is virtually non‐fluorescent in its inactivated form and features a large signal increase upon activation. We show that the probe is capable of selectively sensing NTR in lysates as well as in live bacteria of the ESKAPE family which are clinically highly relevant multiresistant pathogens responsible for the majority of hospital infections. The results suggest that our probe could be used to develop diagnostic tools for bacterial infections.  相似文献   

17.
To separate small molecules from the solvent with high permeability and selectivity, the membrane process is thought to be highly effective with much lower energy consumption when compared to the traditional thermal‐based separation process. To achieve high solvent permeance, a sub‐10 nm thick polyamide nanofiltration membrane was synthesized through interfacial polymerization of ethidium bromide (EtBr) and trimesoyl chloride (TMC). Thanks to the extremely low solubility of the EtBr monomer in the organic phase, the polymerization process was strictly limited at the interface of the water and hexane, leading to an ultrathin polyamide membrane with a thickness down to sub‐10 nm. When used in nanofiltration, these ultrathin membranes display ultrafast water permeation of 40 liter per square meter per hour per bar (L m?2 h?1 bar?1), and a high Congo red rejection rate of 93 %. This work demonstrates a new route to synthesize ultrathin polyamide membranes by the traditional interfacial polymerization.  相似文献   

18.
Paramagnetic effects from lanthanide ions present powerful tools for protein studies by nuclear magnetic resonance (NMR) spectroscopy provided that the lanthanide can be site‐specifically and rigidly attached to the protein. A new, particularly small and rigid lanthanide‐binding tag, 3‐mercapto‐2,6‐pyridinedicarboxylic acid (3MDPA), was synthesized and attached to two different proteins via a disulfide bond. The complexes of the N‐terminal domain of the E. coli arginine repressor (ArgN) with seven different paramagnetic lanthanide ions and Co2+ were analyzed in detail by NMR spectroscopy. The magnetic susceptibility anisotropy (Δχ) tensors and metal position were determined from pseudocontact shifts. The 3MDPA tag generated very different Δχ tensor orientations compared to the previously studied 4‐mercaptomethyl‐DPA tag, making it a highly complementary and useful tool for protein NMR studies.  相似文献   

19.
Guanine radicals are important reactive intermediates in DNA damage. Hydroxyl radical (HO.) has long been believed to react with 2′‐deoxyguanosine (dG) generating 2′‐deoxyguanosin‐N1‐yl radical (dG(N1‐H).) via addition to the nucleobase π‐system and subsequent dehydration. This basic tenet was challenged by an alternative mechanism, in which the major reaction of HO. with dG was proposed to involve hydrogen atom abstraction from the N2‐amine. The 2′‐deoxyguanosin‐N2‐yl radical (dG(N2‐H).) formed was proposed to rapidly tautomerize to dG(N1‐H).. We report the first independent generation of dG(N2‐H). in high yield via photolysis of 1 . dG(N2‐H). is directly observed upon nanosecond laser flash photolysis (LFP) of 1 . The absorption spectrum of dG(N2‐H). is corroborated by DFT studies, and anti‐ and syn‐dG(N2‐H). are resolved for the first time. The LFP experiments showed no evidence for tautomerization of dG(N2‐H). to dG(N1‐H). within hundreds of microseconds. This observation suggests that the generation of dG(N1‐H). via dG(N2‐H). following hydrogen atom abstraction from dG is unlikely to be a major pathway when HO. reacts with dG.  相似文献   

20.
This article describes a green synthetic approach to prepare water dispersible perovskite‐type Eu3+‐doped KZnF3 nanoparticles, carried out using environmentally friendly microwave irradiation at low temperature (85 °C) with water as a solvent. Incorporation of Eu3+ ions into the KZnF3 matrix is confirmed by strong red emission upon ultraviolet (UV) excitation of the nanoparticles. The nanoparticles are coated with poly(acrylic acid) (PAA), which enhances the dispersibility of the nanoparticles in hydrophilic solvents. The strong red emission from Eu3+ ions is selectively quenched upon addition of CuII ions, thus making the nanoparticles a potential CuII sensing material. This sensing ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA), with recovery of almost 90 % of the luminescence. If the nanoparticles are strongly attached to a positively charged surface, dipping the surface in a CuII solution leads to the quenching of Eu3+ luminescence, which can be recovered after dipping in an EDTA solution. This process can be repeated for more than five cycles with only a slight decrease in the sensing ability. In addition to sensing, the strong luminescence from Eu3+‐doped KZnF3 nanoparticles could be used as a tool for bioimaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号