首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
Two complexes [MnIII4(naphthsao)4(naphthsaoH)4] ( 1 ) and [FeIII6O2(naphthsao)4(O2CPh)6] ( 2 ) [naphthsao = 1‐(1‐hydroxy‐naphthalen‐2‐yl)ethanone oxime] were obtained through the reactions of naphthsao ligand and MnCl2 · 4H2O or FeCl3 · 6H2O in the presence of triethylamine (Et3N). Their structures were determined by X‐ray single crystal diffraction, elemental analysis, and IR spectra. Complex 1 displays 12‐MC‐4 metallacrown structural type with cube‐like configuration and 2 shows an offset stacked 10‐MC‐3 structural type with the ring connectivity containing Fe–O–C–O–Fe–O–N–Fe–O–N. Magnetic susceptibility measurement reveals the ferromagnetic interactions and field‐induced slow relaxation of the magnetization for 1 , whereas out‐of‐phase signal is not observed for 2 .  相似文献   

2.
Three pyridyl functionalized bis(pyrazol‐1‐yl)methanes, namely 2‐[(4‐pyridyl)methoxyphenyl] bis(pyrazol‐1‐yl)methane (L1), 2‐[(4‐pyridyl)methoxyphenyl]bis(3,5‐dimethylpyrazol‐1‐yl)methane (L2) and 2‐[(3‐pyridyl)methoxyphenyl]bis(pyrazol‐1‐yl)methane (L3) have been synthesized by the reactions of (2‐hydroxyphenyl)bis(pyrazol‐1‐yl)methanes with chloromethylpyridine. Treatment of these three ligands with R2SnCl2 (R = Et, n‐Bu or Ph) yields a series of symmetric 2:1 adducts of (L)2SnR2Cl2 (L = L1, L2 or L3), which have been confirmed by elemental analysis and NMR spectroscopy. The crystal structures of (L2)2Sn(n‐Bu)2Cl2·0.5C6H14 and (L3)2SnEt2Cl2 determined by X‐ray crystallography show that the functionalized bis(pyrazol‐1‐yl)methane acts as a monodentate ligand through the pyridyl nitrogen atom, and the pyrazolyl nitrogen atoms do not coordinate to the tin atom. The cytotoxic activity of these complexes for Hela cells in vitro was tested. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The title compound (5) has been prepared in one pot by refluxing 1‐(1‐alkyl/aralkyl‐1H‐benzimidazole‐2‐yl)‐ethanone (1) with substituted o‐phenylenediamine (2) in ethanol in the presence of iodine. Alternatively, 5 could also be prepared by treating 2‐bromo‐1‐(1‐ alkyl/aralkyl‐1H‐benzimidazole‐2‐yl)‐ethanone (3A) with 2 in refluxing ethanol. The formation of 5 from 1 and 2 probably occurs through the intermediacy of 3B (i.e., 3, X=I) and 4.  相似文献   

4.
The unsymmetrical N‐heterocyclic ligand 1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole (bmi) has three potential N‐atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1‐[(benzotriazol‐1‐yl)methyl]‐1H‐1,3‐imidazole‐κN 3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self‐assembly of bmi with HgBr2 or HgI2. Single‐crystal X‐ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgII ions in monodentate modes. In the solid state, both complexes display three‐dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.  相似文献   

5.
Two noble metal complexes involving ancillary chloride ligands and chelating 2,2′‐bipyridylamine (Hdpa) or its deprotonated derivative (dpa), namely [bis(pyridin‐2‐yl‐κN)amine]tetrachloridoplatinum(IV), [PtCl4(C10H9N3)], and [bis(pyridin‐2‐yl‐κN)aminido]dichloridogold(III), [AuCl2(C10H8N3)], are presented and structurally characterized. The metal atom in the former has a slightly distorted octahedral coordination environment, formed by four chloride ligands and two pyridyl N atoms of Hdpa, while the metal atom in the latter has a slightly distorted square‐planar coordination environment, formed by two chloride ligands and two pyridyl N atoms of dpa. The difference in conjugation between the pyridine rings in normal and deprotonated 2,2′‐dipyridylamine is discussed on the basis of the structural features of these complexes. The influence of weak interactions on the supramolecular structures of the complexes, providing one‐dimensional chains of [PtCl4(C10H9N3)] and dimers of [AuCl2(C10H8N3)], are discussed.  相似文献   

6.
Two isostructural heterometallic complexes, {[Dy3Ni3(H2O)3(mpko)9(O2)(NO3)3](ClO4) · 3CH3OH · 3CH3CN} ( 1 ) and {[Gd3Ni3(H2O)3(mpko)9(O2)(NO3)3](NO3) · 10.75CH3OH} ( 2 ) [mpkoH = 1‐(pyrazin‐2‐yl)ethanone oxime], were solvothermally synthesized by varying lanthanide ions with different magnetic anisotropy. Structural analyses revealed that both complexes contain a peroxide anion‐aggregated triangular {Ln33‐Ο2)}7+ core, which is surrounded by three NiII octahedra through threefold oxime linkages into a heterometallic hexanuclear cluster. Apparent antiferromagnetic interactions are observed between the adjacent spin carriers of 1 and 2 with the coupling constant JLn ··· Ni ≈ 12JLn ··· Ln. Additionally, 1 with highly anisotropic DyIII site shows slow magnetization relaxation under zero dc field and 2 constructed from isotropic GdIII ion displays significant cryogenic magnetocaloric effect with a maximum entropy change of 24.8 J · kg–1 · K–1 at 3.0 K and 70 kOe.  相似文献   

7.
Two new silver(I) 3D coordination polymers, namely [Ag3(2‐stp)(dpa)]n ( 1 ) and {[Ag2(2‐stp)(H2O)]?Hdpa}n ( 2 ) (2‐NaH2stp=sodium 2,5‐dicarboxysulfonate, dpa=di(pyridine‐2‐yl)amine) were synthesized. The complexes were characterized by elemental analysis, FT‐IR spectra, thermogravimetric analyses (TGA), and single‐crystal X‐ray diffraction. In complex 1 , three neighboring Ag ions are bridged by N‐ and O‐atom, forming a 3D coordination network. The molecular structure of 2 is cation? anion species, forming 3D host? guest supramolecular network with the [Hdpa]+ cations encapsulated in the nanochannels. The photoluminescence properties of the complexes were also investigated in the solid state at room temperature.  相似文献   

8.
Reaction of bis(pyrazol‐1‐yl)acetic acid with n‐Bu2SnO in a 1:1 molar ratio gives dimeric bis[dicarboxylatotetraorganodistannoxanes], {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 (Pz = pyrazol‐1‐yl or 3,5‐dimethylpyrazol‐1‐yl), which are characterized by IR and NMR (1H, 13C and 119Sn) spectra and elemental analyses. The X‐ray crystal structure analyses indicate that {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 is a centrosymmetric dimer with a cyclic Sn2O2 unit, in which each tin atom is situated in a distorted trigonal bipyramidal geometry. In addition, bis(3,5‐dimethylpyrazol‐1‐yl)acetic acid in the solid state forms a dimer through two intermolecular O? H···N hydrogen bonds. These organotin derivatives display low fungicide, insecticide and miticide activities, but display certain cytotoxicities for Hela cells in vitro. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
Two novel triorganotin carboxylate complexes of the biologically active urocanic acid have been synthesized and characterized. Elemental analysis, melting point, spectroscopic techniques – IR, 1H, 13C and 119Sn NMR – mass spectrometry and X‐ray diffraction studies have been used for structural characterization. Crystal structures of the tin(IV) derivatives show that urocanic acid acts as a bridging bidentate ligand through its imidazole nitrogen atom and its carboxylic group, producing a polymeric one‐dimensional chain. The molecular structures of the complexes, catena‐poly‐tri(n‐butyl)tin(IV) 3‐(3H‐imidazol‐4‐yl)prop‐2‐enoate (1) and catena‐poly‐triphenyltin(IV) 3‐(3H‐imidazol‐4‐yl)prop‐2‐enoate (2), present a distorted trigonal–bipyramidal configuration. This is further confirmed by 119Sn NMR in the solid state. The tin(IV) derivatives form double‐stranded ribbons via N―HO―H bonds. Nevertheless, the compounds are essentially monomeric in solution, with a tetrahedral configuration as observed by 119Sn NMR in solution. The cytotoxic activity of the titled compounds has been tested against six human cell lines and the corresponding IC50 values are reported. Both tin(IV) compounds have a high to very high in vitro cytotoxic activity against the tumor cell lines K562, HCT‐15 and MCF‐7. Compound 1 is 86 times more active than cisplatin in the HTC‐15 cell line. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
α-Bromo chalcones containing 2-thiene ring were prepared in good yields by the condensation of 1-(thien-3-yl)ethanone with aromatic aldehydes, followed by bromination with bromine and selective dehydrobromination with triethyl amine at room temperature.  相似文献   

11.
通过双吡唑基甲基锂与二苯基乙烯基碘化锡的反应, 合成了桥头碳上带有乙烯基锡修饰的双吡唑甲烷配体。在回流的THF中这些乙烯基锡修饰的双吡唑甲烷配体(R3SnCHPz2, R3Sn为三乙烯基锡或二苯基乙烯基锡;Pz代表取代吡唑)与M(CO)5THF (M = Mo或W)反应产生杂双金属化合物R3SnCHPz2M(CO)3。在这些化合物中,一个乙烯基以h2方式配位到金属钼或钨上,双吡唑甲烷表现为一个三齿k3-(p,N,N)配体。(CH2=CH)3SnCH(3,5-Me2Pz)2W(CO)3和Ph2(CH2=CH)SnCH(3,5-Me2Pz)2W(CO)3与I2的反应也被研究。前者给出化合物CH2(3,5-Me2Pz)2W(CO)4,而后者随着有机锡的丢失产生四元金属杂环化合物CH(3,5-Me2Pz)2W(CO)3I。用PhSNa处理该四元金属杂环化合物导致碘负离子被取代,得到化合物CH(3,5-Me2Pz)2W(CO)3SPh。  相似文献   

12.
The synthesis of 3,3′‐diacetoxy‐4,4′‐bis(hexyloxy)biphenyl following the nickel‐modified Ullmann reaction yielded a by‐product which was identified successfully by crystallographic analysis as 1‐(4‐hexyloxy‐3‐hydroxyphenyl)ethanone, C14H20O3. This unexpected nonbiphenyl by‐product exhibited IR, 1H NMR, 13C NMR and COSY (correlation spectroscopy) spectra fully consistent with the proposed structure. The compound crystallized in the orthorombic Pbca space group, with two independent formula units in the asymmetric unit (one of which was slightly disordered), and showed a supramolecular architecture in which molecules linked by hydroxy–ethanone O—H...O interactions are organized in columns separated by the aliphatic tails.  相似文献   

13.
A new Zn(II) mononuclear complex with tris(benzimidazol‐2‐yl‐methyl)amine (NTB) was synthesized with stoichiometry of [Zn(NTB)NO3]NO3 · DIPY · DMF (DIPY : 4,4′‐dipyridyl). The complex was characterized by elemental analysis, UV and IR spectra. The crystal structure was determined by using X‐ray diffraction analysis. The crystal structure indicates that four N atoms and one O atom coordinate to zinc ion to construct a distorted trigonal‐dipyramid configuration. Three nonprotonated N atoms from imidazole groups are in the equatorial plane, one alkylamino N atom and one O atom from NO3? in the axial directions. The biological activity assay shows that this complex presents certain biological activity by means of pyrogallol autoxidation and it can be called a model compound of superoxide dismutase (SOD).  相似文献   

14.
Three new compounds based on H2BDC and PyBImE [H2BDC = 1,4‐benzenedicarboxylatic acid, PyBImE = 2‐(2‐pyridin‐4‐yl‐vinyl)benzimidazole], namely, [Co(PyBImE)(BDC)(H2O)2] ( 1 ), [Co(PyBImE)2(HBDC)(BDC)0.5] ( 2 ), and [(HPyBImE)+ · (BDC)20.5 · (H2BDC)0.5] ( 3 ), were synthesized by hydrothermal methods and characterized by single‐crystal X‐ray diffraction. Compound 1 is a one‐dimensional chain bridged by terephthalate in a bis(monodentate) fashion. In the complex the nitrogen atom from NBIm and the coordination water molecule complete the coordination sphere. In complex 2 , the dinuclear cobalt units are bridged by terephthalate in a bis(bidentate) fashion into a one‐dimensional chain, but different from complex 1 , the nitrogen atom from NPy and the oxygen atom from hydrogenterephthalate complete the coordination sphere. Complex 3 is a co‐crystal with PyBImE and H2BDC in a 1:1 ratio and the transfer of hydrogen atoms leads the complex into a salt. Interesting supramolecular structures are shown due to the hydrogen bonding as well as π ··· π interactions in the three complexes. Thermal and magnetic properties of 1 and 2 were also studied.  相似文献   

15.
Reactions of the thiocarbamoyl‐molybdenum complex [Mo(CO)22‐SCNMe2)(PPh3)2Cl] 1 , and ammonium diethyldithiophosphate, NH4S2P(OEt)2, and potassium tris(pyrazoyl‐1‐yl)borate, KTp, in dichloromethane at room temperature yielded the seven coordinated diethyldithiophosphate thiocarbamoyl‐molybdenum complexe [Mo(CO)22‐S2P(OEt)2}(η2‐SCNMe2)(PPh3)] β‐3 , and tris(pyrazoyl‐1‐yl)borate thiocabamoyl‐molybdenum complex [Mo(CO)23‐Tp)(η2‐SCNMe2)(PPh3)] 4 , respectively. The geometry around the metal atom of compounds β‐3 and 4 are capped octahedrons. The α‐ and β‐isomers are defined to the dithio‐ligand and one of the carbonyl ligands in the trans position in former and two carbonyl ligands in the trans position in later. The thiocabamoyl and diethyldithiophosphate or tris(pyrazoyl‐1‐yl)borate ligands coordinate to the molybdenum metal center through the carbon and sulfur and two sulfur atoms, or three nitrogen atoms, respectively. Complexes β‐3 and 4 are characterized by X‐ray diffraction analyses.  相似文献   

16.
Many factors, such as temperature, solvent, the central metal atom and the type of coligands, may affect the nature of metal–organic frameworks (MOFs) and the framework formation in the self‐assembly process, which results in the complexity of these compounds and the uncertainty of their structures. Two new isomeric ZnII metal–organic frameworks (MOFs) based on mixed ligands, namely, poly[[μ‐1,5‐bis(2‐methyl‐1H‐imidazol‐1‐yl)pentane‐κ2N 3:N 3′](μ‐5‐methylisophthalato‐κ2O 1:O 3)zinc(II)], [Zn(C9H6O4)(C13H20N4)]n , (I), and poly[[μ‐1,5‐bis(2‐methyl‐1H‐imidazol‐1‐yl)pentane‐κ2N 3:N 3′](μ3‐5‐methylisophthalato‐κ3O 1:O 1′:O 3)(μ3‐5‐methylisophthalato‐κ4O 1:O 1′:O 3,O 3′)dizinc(II)], [Zn2(C9H6O4)2(C13H20N4)]n , (II), have been synthesized under hydrothermal conditions and characterized by single‐crystal X‐ray diffraction, IR spectroscopy, elemental analysis and thermogravimetric analysis. Complex (I) displays a two‐dimensional layer net, while complex (II) exhibits a twofold interpenetrating three‐dimensional framework. Both complexes show high stability and good fluorescence in the solid state at room temperature.  相似文献   

17.
Two novel coordination polymers, [Cd(BIM)Cl2]n ( 1 ) and [Pb(BIM)Cl2]n ( 2 ) [wherein BIM = bis(imidazol‐1‐yl)methane], were synthesized by the reactions of the BIM ligand with CdCl2 and PbCl2, respectively. They were characterized by elemental analyses, IR, TGA and X‐ray single‐crystal diffraction techniques. Single‐crystal X‐ray structure analyses showed there is a pseudooctahedral arrangement around the cadmium atom in the complex 1 . It has a three‐dimensional network which contains one‐dimensional inorganic‐organic hybrid chains and μ2‐bridging chloride ligands. A rare pentacoordinate square‐pyramidal arrangement was adopted for the lead(II) atom in the complex 2 , which has an unusual two‐dimensional layer structure of macrometallacycles crosslinked with the bridging Pb2Cl2 units. The metal atoms in both complexes were coordinated with two BIM ligands in cis arrangement and bridged by μ2‐bridging chloride ligands.  相似文献   

18.
19.
The synthesis and full characterization of the sterically demanding ditopic lithium bis(pyrazol‐1‐yl)borates Li2[p‐C6H4(B(Ph)pzR2)2] is reported (pzR = 3‐phenylpyrazol‐1‐yl ( 3 Ph), 3‐t‐butylpyrazol‐1‐yl ( 3 tBu)). Compound 3 Ph crystallizes from THF as THF‐adduct 3 Ph(THF)4 which features a straight conformation with a long Li···Li distance of 12.68(1) Å. Compound 3 tBu was found to function as efficient and selective scavenger of chloride ions. In the presence of LiCl it forms anionic complexes [ 3 tBuCl] with a central Li‐Cl‐Li core (Li···Li = 3.75(1) Å).  相似文献   

20.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号