首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the technique of high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry (HPLC‐ESI‐Q‐TOFMS) was used to analyze and identify the absorptive constituents and their metabolites in drug‐containing urine of Wuzhishan (WZS)‐miniature pigs administered with Puerariae Lobatae Radix (PLR) decoction. With the accurate mass measurements (<5 ppm) and effective MS2 fragment ions, 96 compounds, including eight original constituents and 88 metabolites, were identified from the drug‐containing urine. Among these, 64 metabolites were new ones and their structures can be categorized into five types: isoflavones, puerols, O‐desmethylangolensins, equols and isoflavanones. In particular, puerol‐type constituents in PLR were first proved to be absorptive in vivo. Meanwhile, the metabolic pathways of PLR in vivo were investigated. On the basis of relative content of the identified compounds, 13 major metabolites accounting for approximately 50% of the contents, as well as their corresponding 12 prototype compounds, were determined as the major original absorptive constituents and metabolites of PLR in vivo. The HPLC‐ESI‐Q‐TOFMS technique proved to be powerful for characterizing the chemical constituents from the complicated traditional Chinese medicine matrices in this research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
3‐Alkyl/aryl‐3‐ureido‐1H,3H‐quinoline‐2,4‐diones ( 2 ) and 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) react in boiling concentrated HCl to give 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ). The same compounds were prepared by the same procedure from 2‐alkyl/aryl‐3‐ureido‐1H‐indoles ( 4 ), which were obtained from the reaction of 3‐alkyl/aryl‐3‐aminoquinoline‐2,4(1H,3H)‐diones ( 1 ) with 1,3‐diphenylurea or by the transformation of 3a‐alkyl/aryl‐9b‐hydroxy‐3,3a,5,9b‐tetrahydro‐1H‐imidazo[4,5‐c]quinoline‐2,4‐diones ( 3 ) and 5‐alkyl/aryl‐4‐(2‐aminophenyl)‐1,3‐dihydro‐2H‐imidazol‐2‐ones ( 6 ) in boiling AcOH. The latter were converted into 1,3‐bis[2‐(2‐oxo‐2,3‐dihydro‐1H‐imidazol‐4‐yl)phenyl]ureas ( 5 ) by treatment with triphosgene. All compounds were characterized by 1H‐ and 13C‐NMR and IR spectroscopy, as well as atmospheric pressure chemical‐ionisation mass spectra.  相似文献   

4.
The first total synthesis of the α‐oxo amide‐based natural product, N‐(3‐guanidinopropyl)‐2‐(4‐hydroxyphenyl)‐2‐oxoacetamide ( 3 ), isolated from aqueous extracts of hydroid Campanularia sp., has been achieved. The α‐oxo amide 12 , prepared via the oxidative amidation of 1‐[4‐(benzyloxy)phenyl]‐2,2‐dibromoethanone ( 9a ) with 4‐{[(tert‐butyl)(dimethyl)silyl]oxy}butan‐1‐amine ( 10a ), has been used as the key intermediate in the total synthesis of 3 as HBr salt. On the way, an expeditious total synthesis of polyandrocarpamide C ( 2c ), isolated from marine ascidian Polyandrocarpa sp., was carried out in four steps.  相似文献   

5.
Gentiopicroside (GPS), the main bioactive component in Gentiana scabra Bge., has attracted our attention owing to its high bioactivity, especially the treatment of hepatobiliary disorders. The aglycone form of GPS, a typical secoiridoid glycoside, is considered to be more readily absorbed than its parent drug. This study aimed to identify and characterize the metabolites after GPS incubated with β‐glucosidase in buffer solution at 37°C. Samples of biotransformed solution were collected and analyzed by ultraperformance liquid chromatography (UPLC)/quadrupole–time‐of‐flight mass spectrometry (Q‐TOF MS). A total of four metabolites were detected: two were isolated and elucidated by preparative‐HPLC and NMR techniques, and one of those four is reported for the first time. The mass spectral fragmentation pattern and accurate masses of metabolites were established on the basis of UPLC/Q‐TOF MS analysis. Structure elucidation of metabolites was achieved by comparing their fragmentation pattern with that of the parent drug. A fairly possible metabolic pathway of GPS by β‐glucosidase was proposed. The hepatoprotective activities of metabolites M1 and M2 were investigated and the results showed that their hepatoprotective activities were higher than that of parent drug. Our results provided a meaningful basis for discovering lead compounds from biotransformation related to G. scabra Bge. in traditional Chinese medicine. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
4‐(5‐oxo‐1,2,4‐triazol‐3‐yl)‐sydnones 11 and 4‐(4‐arylamino‐5‐oxo‐1,2,4‐triazol‐3‐yl)‐sydnones 13 have been obtained from a‐chloroformylarylhydrazine hydrochloride 2 . Moreover, the intermediates, including 3, 4 , 9 and 10 , in this study are synthetically informative and valuable. It is also noteworthy that three reactants, 1, 2 and sydnonecarbaldehydes, were prepared from sydnone derivatives and their fragments. The oxidative cyclizations of sydnonecarbaldehyde semicarbazones 9 and carbazones 10 with two different oxidizing agents (Cu(ClO4)2 and Fe(ClO4)3) have been extensively examined. The reaction time and the yields of cyclizations were affected by the substituents of semicarbazones 9 and carbazones 10.  相似文献   

7.
In the course of saponification experiments with bis(2‐cyanoethyl) 2,6‐dimethyl‐4‐(2‐nitrophenyl)‐1,4‐dihydro‐3,5‐pyridinedicarboxylate ( 1 ), an analogue of the calcium channel blocker nifedipine, three unexpected degradation products were isolated. The compounds were identified as 3‐(2‐acetamido‐1‐carboxy‐1‐propenyl)‐1‐hydroxy‐2‐indolecarboxylic acid ( 3 ), 9‐hydroxy‐1,3‐dimethyl‐β‐carboline‐4‐carboxylic acid ( 4 ) and 6‐hydroxy‐2,4‐dimethyl‐5‐oxo‐5,6‐dihydrobenzo[c][2,7]naphthyridine‐1‐carboxylic acid ( 6 ). The structures of these compounds were deduced from one‐ and two‐dimensional 1H, 13C and natural abundance 15N NMR experiments (1H,1H‐COSY, gs‐HSQC, gs‐HMBC, 15N gs‐HMBC), and corroborated by comparison of their NMR data with the respective data for structurally similar compounds. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
(3α,5α)‐3‐Hydroxy‐C‐homopregnane‐11,20‐dione ( 3 ) was prepared in eleven steps from the commercially available pregn‐4‐ene‐3,11,20‐trione ( 4 ) via the 11‐oxo‐13‐formyl‐12,13‐secopregnane intermediate 11 (Scheme 2). Subjection of this secopregnane to an intramolecular aldol condensation afforded the α,β‐unsaturated key intermediate C‐homopregn‐12‐en‐11‐one 12 .  相似文献   

9.
Complete assignments of 1H and 13C NMR chemical shifts for oleanolic acid, 18α‐oleanolic acid, ursolic acid and their 11‐oxo derivatives based on 1H, 13C, 2D DQF‐COSY, NOESY, HSQC, HMBC and HSQC‐TOCSY experiments were achieved. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A high‐throughput, sensitive, and rugged liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for the rapid quantitation of β ‐hydroxy‐β ‐methylbutyrate (HMB) in human plasma has been developed and validated for routine use. The method uses 100 μL of plasma sample and employs protein precipitation with 0.1% formic acid in methanol for the extraction of HMB from plasma. Sample extracts were analyzed using LC–MS/MS technique under negative mode electrospray ionization conditions. A 13C–labeled stable isotope internal standard was used to achieve accurate quantitation. Multiday validation was conducted for precision, accuracy, linearity, selectivity, matrix effect, dilution integrity (2×), extraction recovery, freeze–thaw sample stability (three cycles), benchtop sample stability (6 h and 50 min), autosampler stability (27 h) and frozen storage sample stability (146 days). Linearity was demonstrated between 10 and 500 ng/mL. Inter‐day accuracies and coefficients of variation (CV) were 91.2–98.1 and 3.7–7.8%, respectively. The validated method was proven to be rugged for routine use to quantify endogenous levels of HMB in human plasma obtained from healthy volunteers.  相似文献   

11.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

12.
Heterocyclization of bis(2‐oxo‐indol‐3‐ylidene)‐galactaric acid hydrazide ( 3 ) with a variety of one‐nitrogen cyclizing agents gave the corresponding 1,4‐bis{1,2,4‐triazino[5,6‐b]indol‐3‐yl}‐galacto‐tetritols 4–8 . Acetylation of the latter double headed acyclo C‐nucleosides with acetic anhydride in the presence of pyridine at ambient temperature resulted in N‐ and O‐acetylation to give the corresponding 1,2,3,4‐tetra‐O‐acetyl‐1,4‐bis{1,2,4‐triazino[5,6‐b]indol‐3‐yl}‐galacto‐tetritols 9–13 which were found to exist in centro‐symmetric zigzag conformations 20 . The assigned structures were corroborated by 1H, 13C NMR as well as mass spectra.  相似文献   

13.
A rapid and sensitive LC–MS/MS method with good accuracy and precision was developed and validated for the pharmacokinetic study of quercetin‐3‐O‐β‐d ‐glucopyranosyl‐7‐O‐β‐d ‐gentiobioside (QGG) in Sprague–Dawley rats. Plasma samples were simply precipitated by methanol and then analyzed by LC–MS/MS. A Venusil® ASB C18 column (2.1 × 50 mm, i.d. 5 μm) was used for separation, with methanol–water (50:50, v/v) as the mobile phase at a flow rate of 300 μL/min. The optimized mass transition ion‐pairs (m/z) for quantitation were 787.3/301.3 for QGG, and 725.3/293.3 for internal standard. The linear range was 7.32–1830 ng/mL with an average correlation coefficient of 0.9992, and the limit of quantification was 7.32 ng/mL. The intra‐ and inter‐day precision and accuracy were less than ±15%. At low, medium and high quality control concentrations, the recovery and matrix effect of the analyte and IS were in the range of 89.06–92.43 and 88.58–97.62%, respectively. The method was applied for the pharmacokinetic study of QGG in Sprague–Dawley rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
To complete our panorama in structure–activity relationships (SARs) of sandalwood‐like alcohols derived from analogues of α‐campholenal (= (1R)‐2,2,3‐trimethylcyclopent‐3‐ene‐1‐acetaldehyde), we isomerized the epoxy‐isopropyl‐apopinene (?)‐ 2d to the corresponding unreported α‐campholenal analogue (+)‐ 4d (Scheme 1). Derived from the known 3‐demethyl‐α‐campholenal (+)‐ 4a , we prepared the saturated analogue (+)‐ 5a by hydrogenation, while the heterocyclic aldehyde (+)‐ 5b was obtained via a Bayer‐Villiger reaction from the known methyl ketone (+)‐ 6 . Oxidative hydroboration of the known α‐campholenal acetal (?)‐ 8b allowed, after subsequent oxidation of alcohol (+)‐ 9b to ketone (+)‐ 10 , and appropriate alkyl Grignard reaction, access to the 3,4‐disubstituted analogues (+)‐ 4f,g following dehydration and deprotection. (Scheme 2). Epoxidation of either (+)‐ 4b or its methyl ketone (+)‐ 4h , afforded stereoselectively the trans‐epoxy derivatives 11a,b , while the minor cis‐stereoisomer (+)‐ 12a was isolated by chromatography (trans/cis of the epoxy moiety relative to the C2 or C3 side chain). Alternatively, the corresponding trans‐epoxy alcohol or acetate 13a,b was obtained either by reduction/esterification from trans‐epoxy aldehyde (+)‐ 11a or by stereoselective epoxidation of the α‐campholenol (+)‐ 15a or of its acetate (?)‐ 15b , respectively. Their cis‐analogues were prepared starting from (+)‐ 12a . Either (+)‐ 4h or (?)‐ 11b , was submitted to a Bayer‐Villiger oxidation to afford acetate (?)‐ 16a . Since isomerizations of (?)‐ 16 lead preferentially to β‐campholene isomers, we followed a known procedure for the isomerization of (?)‐epoxyverbenone (?)‐ 2e to the norcampholenal analogue (+)‐ 19a . Reduction and subsequent protection afforded the silyl ether (?)‐ 19c , which was stereoselectively hydroborated under oxidative condition to afford the secondary alcohol (+)‐ 20c . Further oxidation and epimerization furnished the trans‐ketone (?)‐ 17a , a known intermediate of either (+)‐β‐necrodol (= (+)‐(1S,3S)‐2,2,3‐trimethyl‐4‐methylenecyclopentanemethanol; 17c ) or (+)‐(Z)‐lancifolol (= (1S,3R,4Z)‐2,2,3‐trimethyl‐4‐(4‐methylpent‐3‐enylidene)cyclopentanemethanol). Finally, hydrogenation of (+)‐ 4b gave the saturated cis‐aldehyde (+)‐ 21 , readily reduced to its corresponding alcohol (+)‐ 22a . Similarly, hydrogenation of β‐campholenol (= 2,3,3‐trimethylcyclopent‐1‐ene‐1‐ethanol) gave access via the cis‐alcohol rac‐ 23a , to the cis‐aldehyde rac‐ 24 .  相似文献   

15.
A reversed‐phase high performance liquid chromatography method has been developed and validated for determination and quantitation of the natural sesquiterpene (−)‐α‐bisabolol. Furthermore the application of the method was done by characterization of chitosan milispheres and liposomes entrapping Zanthoxylum tingoassuiba essential oil, which contains appreciable amount of (−)‐α‐bisabolol. A reversed‐phase C18 column and gradient elution was used with the mobile phase composed of (A) acetonitrile–water–phosphoric acid (19:80:1) and (B) acetonitrile. The eluent was pumped at a flow rate of 0.8 mL/min with UV detection at 200 nm. In the range 0.02–0.64 mg/mL the assay showed good linearity (R2 = 0.9999) and specificity for successful identification and quantitation of (−)‐α‐bisabolol in the essential oil without interfering peaks. The method also showed good reproducibility, demonstrating inter‐day and intra‐day precision based on relative standard deviation values (up to 3.03%), accuracy (mean recovery of 100.69% ± 1.05%) and low values of detection and quantitation limits (0.0005 and 0.0016 mg/mL, respectively). The method was also robust for showing a recovery of 98.81% under a change of solvent in standard solutions. The suitability of the method was demonstrated by the successful determination of association efficiency of the (−)‐α‐bisabolol in chitosan milispheres and liposomes. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Wang‐Bi tablet (WB) is popularly used for the treatment of rheumatoid arthritis. However, few studies have been carried out on its active ingredients and mechanism. In this study, the effect of WB medicated serum on the changes in differentiation and function in osteoblast was investigated, the results showed that WB induced the production of ALP and mineralized nodules to promote the final maturation of osteoblasts and enhance the function of osteoblasts. The potential mechanism may that WB significantly inhibits gene expressions of RANKL and miR‐141, up‐regulates the gene expressions of RUNX2 and OPG, decreases expression of DKK‐1 and increases levels of β‐catenin protein to promote the activation of Wnt/β‐catenin signaling pathways, which enhances osteogenesis and bone repair function. To investigate which compounds contributed to the activity and mechanisms, a total of 138 compounds were characterized from WB, and 13 parent molecules and eight metabolites in rat serum were rapidly characterized by UPLC–Q‐TOF/MS. Total glycosides of paeony, loganin, α‐linolenic acid, linoleic acid and naringin from WB may contribute to the actions on osteoblasts according to our study and literature review. Our research provides a method to explore the bioactive ingredients and action mechanisms of WB.  相似文献   

17.
To help to clarify therapeutic functions of lipoic acid (LA) in biochemical and clinical practice we have elaborated a fast, simple and accurate HPLC method enabling determination of LA in human urine. The proposed analytical approach includes reduction of LA with tris(2‐carboxyethyl)phosphine and simultaneous separation and derivatization of the analyte with butylamine and o‐phthaldialdehyde followed by spectrofluorimetric detection at λex = 340 nm and λem = 440 nm. The assay was performed using gradient elution and the mobile phase containing 0.0025 mol L?1 o‐phthaldialdehyde in 0.0025 mol L?1 NaOH and acetonitrile. Linearity of the detector response for LA was observed in the range of 0.3–8 μmol L?1. Limits of detection and quantification for LA in urine samples were 0.02 and 0.03 μmol L?1, respectively. The total analysis time, including sample work‐up, was <20 min. The analytical procedure was successfully applied to analysis of real urine samples delivered from six healthy volunteers who received a single 100 mg dose of LA.  相似文献   

18.
Catalytic base‐induced decarboxylation of polyunsaturated α‐cyano‐β‐methyl acids derived from malonic acid led to the corresponding nitriles 3 (Schemes 2 and 3), 6 (Scheme 5), and 9 (Scheme 6). This decarboxylation occurred with previous deconjugation of the α,β‐alkene moiety of the α‐cyano‐β‐methyl acid, leading to an α‐cyano‐β‐methylene propanoic acid which was easily decarboxylated (see Scheme 2). β‐Methylene intermediates, in some cases, could be isolated; mechanistic pathways are proposed. The nitriles 3, 6 , and 9 were reduced to the sesquiterpene aldehydes 4 (β‐end group), 7 (φ‐end group), and 10 (ψ‐end group), respectively.  相似文献   

19.
In our previous studies, caudatin‐2,6‐dideoxy‐3‐O‐methy‐β‐d‐ cymaropyranoside (CDMC) was for the first time isolated from Cynanchum auriculatum Royle ex Wightand and was reported to possess a wide range of biological activities. However, the routes and metabolites of CDMC produced by intestinal bacteria are not well understood. In this study, ultra‐performance liquid chromatography/quadrupole time‐of‐flight mass spectrometry (UPLC‐Q‐TOF‐MS) technique combined with MetabolynxTMsoftware was applied to analyze metabolites of CDMC by human intestinal bacteria. The incubated samples collected for 48 h in an anaerobic incubator and extracted with ethyl acetate were analyzed by UPLC‐Q‐TOF‐MS within 12 min. Eight metabolites were identified based on MS and MS/MS data. The results indicated that hydrolysis, hydrogenation, demethylation and hydroxylation were the major metabolic pathways of CDMC in vitro. Seven strains of bacteria including Bacillus sp. 46, Enterococcus sp. 30 and sp. 45, Escherichia sp. 49A, sp. 64, sp. 68 and sp. 75 were further identified using 16S rRNA gene sequencing owing to their relatively strong metabolic capacity toward CDMC. The present study provides important information about metabolic routes of CDMC and the roles of different intestinal bacteria in the metabolism of CDMC. Moreover, those metabolites might influence the biological effect of CDMC in vivo, which affects the clinical effects of this medicinal plant. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
(E)‐2‐[2‐(1‐Substituted ethylidene)hydrazinyl]‐5‐oxo‐9b‐hydroxy‐5,9b‐dihydroindeno[1,2‐d][1,3]‐thiazine‐4‐carbonitriles and (E)‐5‐oxo‐[(E)‐(1‐substituted ethylidene)hydrazinyl]‐2,5‐dihydroindeno[1,2‐d][1,3]thiazine‐4‐carbonitriles have been obtained from the reaction of 2‐(substituted ethylidene)hydrazinecarbothioamides with 2‐(1,3‐dioxo‐2,3‐dihydro‐1H‐inden‐2‐ylidene)propanedinitrile ( 1 ) in ethyl acetate solution. However, (Z)‐6′‐amino‐1,3‐dioxo‐3′‐substituted‐2′‐[(E)‐(1‐phenylethylidene)hydrazono]‐1,2′,3,3′‐tetrahydrospiro(indene‐2,4′‐[1,3]thiazine)‐5′‐carbonitriles were observed during the reaction of N‐substituted‐2‐(1‐phenylethylidene)hydrazinecarbothioamides with ( 1 ). The structure assignment of products has been confirmed on the basis of 1H‐, 13C‐NMR, and mass spectrometry, as well as theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号