首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two structures of neutral leucine are detected in the jet-cooled rotational spectrum of a laser-ablation molecular-beam Fourier transform microwave (LA-MB-FTMW) experiment. The comparison between the experimental rotational and (14)N nuclear quadrupole coupling constants and those calculated ab initio provides conclusive evidence for the identification of the conformers. The most stable species is stabilized by a N-H...O=C intramolecular hydrogen bond and a cis-COOH interaction, while a higher-energy conformer exhibits a N...H-O intramolecular hydrogen bond and trans-COOH, as in lower aliphatic amino acids. The isobutyl side chain adopts the same configuration in the two conformers of leucine, characterized by a trans arrangement of the C'-C(alpha)-C(beta)-C(gamma)-C(delta) chain. The differences with the preferred side chain configurations observed in valine and isoleucine are discussed.  相似文献   

2.
Learning your αβγ's: The diversity of hydrogen-bonding patterns in backbone-expanded hybrid helices is shown by crystal-structure determination of several oligomeric peptides (see scheme; C=gray; H=white; O=red; N=blue). C(12) helices were observed in the αγ peptide series for n=2-8. In comparison, the αα peptide and αβ peptide sequences show C(10) and mixed C(14) /C(15) helices, respectively.  相似文献   

3.
Herein, we demonstrate that with the widespread theme of residue patterning and stereochemical restraints of self-complimenting proteinogenic amino acids, a new and rich class of homomeric dipeptides exhibiting two-dimensional fluid aggregates with hierarchical ordering can be obtained. In particular, a simple way of achieving a class of functional dipeptides, wherein the first and the second residues chosen are L-/D-alanines and L-/D-leucines, has been accomplished. The supramolecules synthesized can be regarded as intermediates between polycatenars and taper-shaped amphiphiles because they possess two lipophilic segments interlinked by a peptide unit (spacer). Two pairs of enantiomers and their respective diastereomers derived from these amino acids are evidenced to self-organize into a helical columnar phase through hydrogen bonding by means of FTIR, UV/Vis, and chiroptical circular dichroism (CD) spectral analyses as well as by optical, calorimetric, electrical switching, and X-ray studies. The CD and X-ray studies have revealed that the form chirality (handedness) and the magnitude of out-of-plane fluctuations of the lattice planes of the fluid supramolecular columnar structures are solely directed by the stereochemistry encoded in the spacer. Of special significance, the less frequently found oblique helical columnar phase formed by a pair of enantiomers derived from L-/D-alanines, unlike those derived from other amino acids, exhibit ferroelectric behavior; the measured spontaneous polarization is as high as 440 nC cm(-2). Besides, all these supramolecules form stable organogels in ethanol and the CD and SEM studies on a representative gel suggest the presence of helical structures.  相似文献   

4.
5.
6.
We present a detailed structural study of peptide derivatives of 1'-aminoferrocene-1-carboxylic acid (ferrocene amino acid, Fca), one of the simplest organometallic amino acids. Fca was incorporated into di- to pentapeptides with D- and L-alanine residues attached to either the carboxy or amino group, or to both. Crystallographic and spectroscopic studies (circular dicroism (CD), IR, and NMR) of about two dozen compounds were used to gain a detailed insight into their structures in the solid state as well as in solution. Four derivatives were characterized by single-crystal X-ray analysis, namely Boc-Fca-Ala-OMe (16), Boc-Fca-D-Ala-OMe (17), Boc-Fca-beta-Ala-OMe (18), and Boc-Ala-Fca-Ala-Ala-OMe (21) (Boc=tert-butyloxycarbamyl). CD spectroscopy is an extremely useful tool to elucidate the helical chirality of the metallocene core. Unlike in all other known ferrocene peptides, the helical chirality of the ferrocene is governed solely by the chirality of the amino acid attached to the N terminus of Fca. Depending on the degree of substitution of both cyclopentadiene (Cp) rings, different hydrogen-bonding patterns are realized. (1)H NMR and IR spectroscopy, together with the results from X-ray crystallography, give detailed information regarding not only the hydrogen-bonding patterns of the compounds, but also the equilibria between different conformers in solution. Differences in chemical shifts of NH protons in dimethyl sulfoxide ([D(6)]DMSO) and CDCl(3), that is, the variation ratio (vr), is used for the first time as a measure of the hydrogen-bonding strength of individual COHN bonds in ferrocenoyl peptides. In dipeptides with one intramolecular hydrogen bond between the pendant chains, for example, in dipeptide 16, an equilibrium between hydrogen-bonded and open forms is observed, as testified by a vr value of around 0.5. Higher peptides, such as tetrapeptide 21, are able to form two intramolecular hydrogen bonds stabilizing one single conformation in CDCl(3) solution (vr approximately 0). Due to the low barrier of Cp-ring rotation, new and unnatural hydrogen-bonding patterns are emerging. The systematic work described herein lays a solid foundation for the rational design of metallocene peptides with unusual structures and properties.  相似文献   

7.
This work describes the use of conformer‐selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four‐membered ring cyclic β‐amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans‐substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen‐atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen‐bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis‐substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block.  相似文献   

8.
9.
The incorporation of β‐amino acid residues into the antiparallel β‐strand segments of a multi‐stranded β‐sheet peptide is demonstrated for a 19‐residue peptide, Boc‐LVβFVDPGLβFVVLDPGLVLβFVV‐OMe (BBH19). Two centrally positioned DPro–Gly segments facilitate formation of a stable three‐stranded β‐sheet, in which β‐phenylalanine (βPhe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR‐derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well‐defined three‐stranded β‐sheet structure in solution. Cross‐strand interactions between βPhe3/βPhe17 and βPhe3/Val15 residues define orientations of these side‐chains. The observation of close contact distances between the side‐chains on the N‐ and C‐terminal strands of the three‐stranded β‐sheet provides strong support for the designed structure. Evidence is presented for multiple side‐chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three‐stranded β‐sheet structures, which in turn influences the conformational interconversion between type I′ and type II′ β‐turns at the two DPro–Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc‐LVβFVDPGLβFVV‐OMe (BBH10), which has been previously characterized as a type I′ β‐turn nucleated hairpin, is shown to favour a type II′ β‐turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.  相似文献   

10.
In nonpolar solvents, the cyclic hexapeptide 2, which comprises alternating D-alpha-amino and D-alpha-aminoxy acids, adopts a C3-symmetric conformation with alternating eight (N--O turns)- and seven (gamma turns)-membered-ring hydrogen bonds. A series of anion-binding studies has suggested that 2 can function as an effective anion receptor that not only displays a high selectivity for chloride ions, but also the capability to extract chloride ions from aqueous solutions into organic phases.  相似文献   

11.
The simplest non-proteinogenic amino acid α-aminoisobutyric acid (Aib), an analogue of glycine and alanine, has been vaporized by laser ablation and probed by high-resolution Fourier transform microwave spectroscopic techniques. Comparison of the experimental rotational and 14N nuclear quadrupole constants with that predicted ab initio has allowed the identification of three conformers of Aib exhibiting three types of hydrogen-bond interactions I (NH⋅⋅⋅O=C, cis-COOH), II (OH⋅⋅⋅N, trans-COOH), and III (N−H⋅⋅⋅O−H, cis-COOH) within the amino acid backbone. The observation of conformer III, not detected previously for related proteinogenic amino acids with a nonpolar side chain in a supersonic expansion, indicates that the presence of the methyl groups should restrict the conformational relaxation from conformer Aib-III to Aib-I. For conformer Aib-II, the rotational spectra of the 13C isotopomers reveal a tunneling motion arising from the two equivalent methyl groups in the molecule. The observation of a single spectrum at the midpoint between those predicted for the two 13C of the methyl groups has been explained by considering a double-minimum potential function with a low-energy interconversion barrier for a large amplitude internal motion. This singular fact has been corroborated by the anomalous centrifugal distortion effects determined in conformer Aib-II.  相似文献   

12.
13.
The crystal structures of four dipeptides that contain the stereochemically constrained gamma-amino acid residue gabapentin (1-(aminomethyl)cyclohexaneacetic acid Gpn) are described. The molecular conformation of Piv-Pro-Gpn-OH (1), reveals a beta-turn mimetic conformation, stabilized by a ten atom C[bond]H...O hydrogen bond between the Piv CO group and the pro S hydrogen of the Gpn CH(2)[bond]CO group. The peptides Boc-Gly-Gpn-OH (2), Boc-Aib-Gpn-OH (3), and Boc-Aib-Gpn-OMe (4) form compact, folded structures, in which a distinct reversal of polypeptide chain direction is observed. In all cases, the Gpn residue adopts a gauche,gauche (g,g) conformation about the C(gamma)[bond]C(beta) (theta(1)) and C(beta)[bond]C(alpha) (theta(2)) bonds. Two distinct Gpn conformational families are observed. In peptides 1 and 3, the average backbone torsion angle values for the Gpn residue are phi=98 degrees, theta(1)=-62 degrees, theta(2)=-73 degrees, and psi=79 degrees, while in peptide 2 and 4 the average values are phi=-103 degrees, theta(1)=-46 degrees, theta(2)=-49 degrees, and psi=-92 degrees. In the case of 1 and 3, an intramolecular nine-membered O[bond]H...O hydrogen bond is formed between the C[double bond]O of the preceding residue and the terminal carboxylic acid OH group. All four alpha-gamma dipeptide sequences yield compact folded backbone conformations; this suggests that the Gpn residue may be employed successfully in the design of novel folded structures.  相似文献   

14.
Origami peptides : A novel class of foldamers consisting of α/δ‐hybrid peptides has been investigated theoretically and experimentally by exploiting the rigidity of the side chain of a new δ‐amino acid prepared from D ‐glucose and D ‐xylose with a furanose side chain (see figure).

  相似文献   


15.
The conformations of a protected tetrathiopeptide have been analysed by isotope labelling and two-dimensional infrared spectroscopy (2D-IR). It has been found that Boc-Ala-Gly(=S)-Ala-Aib-OMe in acetonitrile, as well as its oxopeptide analogue, can adopt a hydrogen-bonded loop conformation in coexistence with less restricted structures. The two types of conformations interconvert too quickly to be resolved on the nuclear magnetic resonance (NMR) timescale, but give rise to different cross peaks in two-dimensional infrared spectra. The hydrogen bond between the Boc terminal group and the amide proton of Aib can be broken by photoisomerisation of the thioamide bond.  相似文献   

16.
17.
    
A new three‐residue turn was serendipitously discovered in α/β hybrid peptides derived from alternating C‐linked carbo‐β‐amino acids (β‐Caa) and L ‐Ala residues. The three‐residue β‐α‐β turn at the C termini, nucleated by a helix at the N termini, resulted in helix‐turn (HT) supersecondary structures in these peptides. The turn in the HT motif is stabilized by two H bonds—CO(i?2)–NH(i), with a seven‐membered pseudoring (γ turn) in the backward direction, and NH(i?2)–CO(i), with a 13‐membered pseudoring in the forward direction (i being the last residue)—at the C termini. The study was extended to generalize the new three‐residue turn (β‐α‐β) by using different α and β‐amino acids. Furthermore, the HT motifs were efficiently converted, by an extension with helical oligomers at the C termini, into peptides with novel helix‐turn‐helix (HTH) tertiary structures. However, this resulted in the destabilization of the β‐α‐β turn with the concomitant nucleation of another three‐residue turn, α‐β‐β, which is stabilized by 11‐ and 15‐membered bifurcated H bonds. Extensive NMR spectroscopic studies were carried out to delineate the secondary and tertiary structures in these peptides, which are further supported by molecular dynamics (MD) investigations.  相似文献   

18.
19.
The neutral form of the unnatural amino acid phenylglycine was vaporized by laser ablation, and the presence of two conformers was detected in a supersonic expansion by Fourier transform microwave spectroscopy. Both conformers were unequivocally identified by comparison of their experimental rotational and quadrupole coupling constants with those calculated ab initio. The most stable conformer is stabilized by intramolecular hydrogen bonds N-H...O=C, N-H...pi (with the closest C-C bond in the aromatic ring), and a cis-COOH interaction. The other conformer exhibits a O-H...N hydrogen bond between the hydrogen atom of the hydroxyl group and the lone pair at the nitrogen atom.  相似文献   

20.
Helical polymers of isocyanopeptides derived from beta-amino acids have been synthesized and their architectures have been studied in detail. Similar to their alpha-amino acid analogues, the helical conformation in these macromolecules is stabilized by internal hydrogen-bonding arrays along the polymeric backbone. Unexpectedly, the flexibility of the beta-peptide side arms results in a rearrangement of the initial macromolecular architecture, leading to a more stable helical structure possessing a better defined hydrogen-bonding pattern, as was concluded from IR and temperature-dependent circular dichroism studies. Based on these results we propose a dynamic helical model for the beta-amino acid derived polyisocyanopeptides; this model is in contrast to the kinetically stable helical macromolecules that are formed upon polymerization of alpha-amino acid based isocyanopeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号