首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 752 毫秒
1.
A rapid and highly sensitive assay method has been developed and validated for the estimation of galantamine (GLM) in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of GLM and phenacetin (internal standard, IS) from rat plasma using acetonitrile. Chromatographic separation was achieved with 0.2% formic acid:acetonitrile (50:50, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 2.5 min. The MS/MS ion transitions monitored were 288.10 → 213.10 for GLM and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.12 ng/mL and linearity was observed from 0.12 to 525 ng/mL. The intra‐ and inter‐day precision were in the ranges of 4.73–11.7 and 5.83–8.64%, respectively. This novel method has been applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A highly sensitive and rapid assay method has been developed and validated for the estimation of S‐(−)‐raclopride (S‐RCP) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive ion mode. The assay procedure involves a simple liquid–liquid extraction technique for extraction of S‐RCP and phenacetin (internal standard, IS) from rat plasma. Chromatographic separation was achieved with 0.2% formic acid : acetonitrile (80:20, v/v) at a flow rate of 0.30 mL/min on a Phenomenex Prodigy C18 column with a total run time of 4.5 min. The MS/MS ion transitions monitored were 347.2 → 112.1 for S‐RCP and 180.1 → 110.1 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity range was extended from 0.05 to 152 ng/mL in rat plasma. The intra‐day and inter‐day precisions were 0.23–10.5 and 3.74–7.29%, respectively. This novel method was applied to a pharmacokinetic study of S‐RCP in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A highly sensitive, rapid assay method has been developed and validated for the estimation of nobiletin in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of nobiletin and citalopram (internal standard, IS) from rat plasma with liquid–liquid extraction. Chromatographic separation wa s achieved using an isocratic mobile phase (0.2% formic acid–acetonitrile, 20:80, v/v) at a flow rate of 0.6 mL/min on an Atlantis dC18 column (maintained at 40 ± 1 °C) with a total run time of 2.0 min. The MS/MS ion transitions monitored were 403.2 → 373.0 for nobiletin and 325.2 → 109.0 for IS. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.05 ng/mL and the linearity range extended from 0.05 to 51.98 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.96–14.3 and 6.21–12.1, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
A highly sensitive, rapid assay method has been developed and validated for the estimation of S‐citalopram (S‐CPM) in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves a simple liquid–liquid extraction of S‐CPM and phenacetin (internal standard, IS) from rat plasma with t‐butyl methyl ether. Chromatographic separation was operated with 0.2% formic acid:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Symmetry Shield RP18 column with a total run time of 3.0 min. The MS/MS ion transitions monitored were 325.26 → 109.10 for S‐CPM and 180.10 → 110.10 for IS. Method validation and pre‐clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.5 ng/mL and the linearity was observed from 0.5 to 5000 ng/mL. The intra‐ and inter‐day precisions were in the range of 1.14–5.56 and 0.25–12.3%, respectively. This novel method has been applied to a pharmacokinetic study and to estimate brain‐to‐plasma ratio of S‐CPM in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A highly sensitive, rapid assay method has been developed and validated for the estimation of montelukast (MTK) in human plasma with liquid chromatography coupled to tandem mass spectrometry with electro spray ionization in the positive‐ion mode. Liquid–liquid extraction was used to extract MTK and amlodipine (internal standard, IS) from human plasma. Chromatographic separation was achieved with 10 mm ammonium acetate (pH 6.4): acetonitrile (15:85, v/v) at a flow rate of 0.50 mL/min on a Discovery HS C18 column with a total run time of 3.5 min. The MS/MS ion transitions monitored were 586.10 → 422.10 for MTK and 409.20 → 238.30 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.25 ng/mL and linearity was observed from 0.25 to 800 ng/mL. The intra‐day and inter‐day precisions were 5.97–8.33 and 7.09–10.13%, respectively. This novel method has been applied to a pharmacokinetic study of MTK in humans. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A highly sensitive, rapid assay method has been developed and validated for the simultaneous estimation of tolmetin (TMT) and MED5 in human plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. A simple solid‐phase extraction process was used to extract TMT and MED5 along with mycophenolic acid (internal standard, IS) from human plasma. Chromatographic separation was achieved with 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 0.50 mL/min on an X‐Terra RP18 column with a total run time of 2.5 min. The MS/MS ion transitions monitored were 258.1 → 119.0 for TMT, 315.1 → 119.0 for MED5 and 321.2 → 207.0 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 20 ng/mL and the linearity was observed from 20 to 2000 ng/mL, for both the anlaytes. The intra‐day and inter‐day precisions were in the range 3.27–4.50 and 5.32–8.18%, respectively for TMT and 4.27–5.68 and 5.32–8.85%, respectively for MED5. This novel method has been applied to a clinical pharmacokinetic study. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive, rapid assay method was developed and validated for the estimation of lorglumide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in positive‐ion mode. The assay procedure involves extraction of lorglumide and phenacetin (internal standard, IS) from mouse plasma with simple protein precipitation. Chromatographic separation was achieved using an isocratic mobile (0.2% formic acid solution–acetonitrile, 20:80, v/v) at a flow‐rate of 0.5 mL/min on an Atlantis dC18 column maintained at 40 °C with a total run time of 4.0 min. The MS/MS ion transitions monitored were 459.2 → 158.4 for lorglumide and 180.1 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.42 ng/mL and the linearity range extended from 0.42 to 500 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 1.47–10.9 and 3.56–7.53, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive, rapid assay method has been developed and validated for the estimation of JI‐101 in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The assay procedure involves extraction of JI‐101 and phenacetin (internal standard, IS) from rat plasma with a solid‐phase extraction process. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.30 mL/min on a Prodigy ODS column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 466.1 → 265 for JI‐101 and 180.1 → 110.1 for IS. Method validation and sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 5.03 ng/mL and the linearity range extended from 5.03 to 2014 ng/mL. The intra‐day and inter‐day precisions were in the ranges of 1.17–19.6 and 3.09–10.4%, respectively. This method has been applied to a pharmacokinetic study of JI‐101 in rats. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A highly sensitive, rapid assay method has been developed and validated for the estimation of adenosine in rat plasma with liquid chromatography coupled to tandem mass spectrometry with electro‐spray ionization in the positive‐ion mode. The assay procedure involves extraction of adenosine and phenacetin (internal standard, IS) from rat plasma with a simple protein precipitation extraction process. The method was validated using rat plasma with extinguished adenosine endogenous levels. Chromatographic separation was achieved using a binary gradient using mobile phase A (acetonitrile) and B (0.2% formic acid in water) at a flow rate of 0.50 mL/min on an Atlantis dC18 column with a total run time of 4.0 min. The MS/MS ion transitions monitored were 268 → 136 for adenosine and 180 → 110 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.48 ng/mL and the linearity range extended from 0.48 to 1210 ng/mL. The intra‐ and inter‐day precisions were in the ranges 2.32–12.7 and 4.01–9.40%, respectively. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A sensitive and specific LC–MS/MS assay for determination of β ‐eudesmol in rat plasma was developed and validated. After liquid–liquid extraction with ethyl ether , the analyte and IS were separated on a Capcell Pak C18 column (50 × 2.0 mm, 5 μm) by isocratic elution with acetonitrile—water–formic acid (77.5:22.5:0.1, v /v/v) as the mobile phase at a flow rate of 0.4 mL/min. An ESI source was applied and operated in positive ion mode; a selected reaction monitoring scan was used for quantification by monitoring the precursor–product ion transitions of m/z 245.1 → 163.1 for β ‐eudesmol and m/z 273.4 → 81.2 for IS. Good linearity was observed in the concentration range of 3–900 ng/mL for β ‐eudesmol in rat plasma. Intra‐ and inter‐day precision and accuracy were both within ±14.3%. This method was applied for pharmacokinetic studies after intravenous bolus of 2.0 mg/kg or intragastric administration of 50 mg/kg β ‐eudesmol in rats.  相似文献   

11.
An improved, simple and highly sensitive LC‐MS/MS method has been developed and validated for quantification of febuxostat with 100 μL human plasma using febuxostat‐d7 as an internal standard (IS) according to regulatory guidelines. The analyte and IS were extracted from human plasma via liquid–liquid extraction using diethyl ether. The chromatographic separation was achieved on a Zorbax C18 column using a mixture of acetonitrile and 5 mm ammonium formate (60:40, v/v) as the mobile phase at a flow rate of 0.5 mL/min. The total run time was 5.0 min and the elution of febuxostat and IS occurred at 1.0 and 1.5 min, respectively. A linear response function was established for the range of concentrations 1–6000 ng/mL (r > 0.99). The precursor to product ion transitions monitored for febuxostat and IS were m/z 317.1 → 261.1 and 324.2 → 262.1, respectively. The intra‐ and inter‐day precisions (%RSD) were within 1.29–9.19 and 2.85–7.69%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A simple, rapid and sensitive analytical method using liquid chromatography coupled to tandem mass spectrometry (LC‐MS/MS) detection with positive ion electrospray ionization was developed for the determination of dienogest in human K2EDTA plasma using levonorgestrel d6 as an internal standard (IS). Dienogest and IS were extracted from human plasma using simple liquid–liquid extraction. Chromatographic separation was achieved on a Zorbax XDB‐Phenyl column (4.6 × 75 mm, 3.5 µm) under isocratic conditions using acetonitrile–5 mm ammonium acetate (70:30, v/v) at a flow rate of 0.60 mL/min. The protonated precursor to product ion transitions monitored for dienogest and IS were at m/z 312.30 → 135.30 and 319.00 → 251.30, respectively. The method was validated with a linearity range of 1.003–200.896 ng/mL having a total analysis time for each chromatograph of 3.0 min. The method has shown tremendous reproducibility with intra‐ and inter‐day precision (coefficient of variation) <3.97 and 6.10%, respectively, and accuracy within ±4.0% of nominal values. The validated method was applied to a pharmacokinetic study in human plasma samples generated after administration of a single oral dose of 2.0 mg dienogest tablets to healthy female volunteers and was proved to be highly reliable for the analysis of clinical samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A selective and sensitive HPLC–MS/MS method was developed for the simultaneous determination of cucurbitacin IIa (cuIIa) and cucurbitacin IIb (cuIIb), the major bioactive cucurbitacins of Hemsleya amabilis, in rat plasma using euphadienol as internal standard (IS). After liquid–liquid extraction with dichloromethane, separation was achieved on a Syncronis HPLC C18 column (150 mm × 4.6 mm, 5 μm) using an isocratic mobile phase system consisting of acetonitrile–water (85:15, v/v) at a flow rate of 0.6 mL/min with a split ratio of 1:2. Detection was performed on a TSQ Quantum Ultra mass spectrometer equipped with an positive‐ion electrospray ionization source. The lower limits of quantification (LLOQs) were 0.25 and 0.15 ng/mL for cuIIa and cuIIb, respectively. The intra‐ and inter‐day precision was <11.5% for the LLOQs and each quality control level of the analytes, and accuracy was between ?9.1 and 7.6%. The extraction recoveries of the analytes and IS from rat plasma were all >87.1%. The method was fully validated and applied to compare the pharmacokinetic profiles of the two cucurbitacins in rat plasma after oral administration of H. amabilis extract between normal and indomethacin‐induced rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

15.
A highly sensitive, rapid assay method has been developed and validated for the estimation of ropinirole (RPR) in human plasma with liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. A solid‐phase process was used to extract RPR and citalopram (internal standard, IS) from human plasma. Chromatographic separation was operated with 0.2% ammonia solution:acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on a Hypurity C18 column with a total run time of 3.2 min. The MS/MS ion transitions monitored were 261.2 → 114.2 for RPR and 325.1 → 209.0 for IS. Method validation and clinical sample analysis were performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 3.45 pg/mL and the linearity was observed from 3.45 to 1200 pg/mL. The intra‐day and inter‐day precisions were in the range of 4.71–7.98 and 6.56–8.31%, respectively. This novel method has been applied to a pharmacokinetic study of RPR in humans. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A highly sensitive, rapid assay method has been developed and validated for the estimation of bicalutamide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves extraction of bicalutamide and tolbutamide (internal standard, IS) from mouse plasma with a simple protein precipitation method. Chromatographic separation was achieved using an isocratic mobile phase (0.2% formic acid:acetonitrile, 35:65, v/v) at a flow rate of 0.5 mL/min on an Atlantis dC18 column (maintained at 40 ± 1°C) with a total run time of 3.0 min. The MS/MS ion transitions monitored were m/z 428.9 → 254.7 for bicalutamide and m/z 269.0 → 169.6 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 1.04 ng/mL and the linearity range extended from 1.04 to 1877 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 0.49–4.68 and 2.62–4.15, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This study aims to develop and validate a simple and sensitive liquid chromatography with tandem mass spectrometry (LC–MS/MS) method for investigating the pharmacokinetic characteristics of bavachalcone. Liquid–liquid extraction was used to prepare plasma sample. Chromatographic separation of bavachalcone and IS was achieved using a Venusil ASB C18 (2.1 × 50 mm, 5 μm) column with a mobile phase of methanol (A)–water (B) (70:30, v /v). The detection and quantification of analytes was performed in selected‐reaction monitoring mode using precursor → product ion combinations of m/z 323.1 → 203.2 for bavachalcone, and m/z 373.0 → 179.0 for IS. Linear calibration plots were achieved in the range of 1–1000 ng/mL for bavachalcone (r 2 > 0.99) in rat plasma. The recovery of bavachalcone ranged from 84.1 to 87.0%. The method was precise, accurate and reliable. It was fully validated and successfully applied to pharmacokinetic study of bavachalcone.  相似文献   

18.
A simple, rapid and sensitive liquid chromatography/positive ion electro‐spray tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the quantification of fexofenadine with 100 μL human plasma employing glipizide as internal standard (IS). Protein precipitation was used in the sample preparation procedure. Chromatographic separation was achieved on a reversed‐phase C18 column (5 μm, 100 × 2.1 mm) with methanol : buffer (containing 10 mmol/L ammonium acetate and 0.1% formic acid; 70 : 30, v/v) as mobile phase. The total chromatographic runtime was approximately 3.0 min with retention time for fexofenadine and IS at approximately 1.9 and 2.1 min, respectively. Detection of fexofenadine and IS was achieved by LC‐MS/MS in positive ion mode using 502.1 → 466.2 and 446.0 → 321.1 transitions, respectively. The method was proved to be accurate and precise at linearity range of 1–600 ng/mL with a correlation coefficient (r) of ≥0.9976. The validated method was applied to a pharmacokinetic study in human volunteers following oral administration of 60 or 120 mg fexofenadine formulations, successfully. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A rapid and highly sensitive assay method has been developed and validated for the estimation of bicalutamide (BCL) on mouse dried blood spots (DBS) using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves a simple liquid extraction of BCL and tolbutamide (internal standard, IS) from mouse blood DBS cards using tert‐butyl methyl ether. Chromatographic separation was achieved with 5 mm ammonium acetate (pH 6.5)–acetonitrile (35:65, v/v) at a flow rate of 0.60 mL/min on an Atlantis dC18 column with a total run time 3.0 min. The MS/MS ion transitions monitored were 428.80 → 254.70 for BCL and 269.00 → 169.60 for IS. Method validation was performed as per regulatory guidelines. A linear response function was observed from 0.92 to 1911 ng/mL for BCL in mouse blood. The intra‐ and inter‐day precisions were in the ranges of 1.86–12.5 and 3.19–10.8%, respectively. This novel DBS method has been applied to a pharmacokinetic study in mice. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive, selective and rapid LC–ESI–MS/MS method has been developed and validated for the quantification of copanlisib in mouse plasma using enasidenib as an internal standard (IS) as per regulatory guideline. Copanlisib and the IS were extracted from mouse plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid–acetonitrile; 25:75, v/v) on a HyPURITY C18 column. Copanlisib and the IS eluted at ~0.95 and 2.00 min, respectively. The MS/MS ion transitions monitored were m/z 481.1 → 360.1 and m/z 474.0 → 456.0 for copanlisib and the IS, respectively. The calibration range was 3.59–3588 ng/mL. The intra‐ and inter‐batch accuracy and precision (RE and RSD) across quality controls met the acceptance criteria. Stability studies showed that copanlisib was stable in mouse plasma for one month. This novel method has been applied to a pharmacokinetic study in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号