首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Devising efficient gene delivery systems is crucial to enhancing the therapeutic efficacy of gene–cell therapy approaches. Herein, inverted quasi‐spherical (iQS) droplet systems, which enhance gene delivery efficiencies by reducing the path lengths of gene vectors, mediating motions of vectors at early stages, and raising the contact frequencies of vectors with cells, are developed by adopting the principle of 3D hanging‐drop cell culture. Micrometer‐sized polydopamine (pDA) holes are created on superhydrophobic titanium isopropoxide (TiO2)‐coated substrates by physical scraping; droplets are loaded on the pDA holes, and inversion of the substrate generates iQS droplets with large contact angles. Both human neural stem cells (hNSCs) and adeno‐associated viral vectors are simultaneously incorporated into the iQS droplets to assess gene delivery efficiencies. The steep angles of iQS droplets and enhanced cell/vector contact frequencies facilitate the viral association with hNSCs and enhancing cell–cell interactions, thereby significantly promoting gene delivery efficiencies. Even with reduced viral quantities/exposure times and cell numbers, the iQS droplet systems elicit sufficient gene expression (i.e., interleukin‐10). The ability of the iQS droplet systems to maximize beneficial gene delivery effects with minimal materials (e.g., medium, cells, and vectors) should enable their extensive use as a platform for preparing genetically stimulated cellular therapeutics.  相似文献   

6.
7.
8.
In this study, two types of BolA‐like amphiphilic peptides with dual ligands comprising a tumor‐targeting moiety of RGD sequence and a cell‐penetrating moiety of R8 sequence are designed and synthesized as gene vectors. The BolA‐structural peptide carriers can self‐assemble into spherical nanoparticles with a hydrophilic core and shell, which are similar to the viral capsid and can bind plasmid DNA in an aqueous medium to form viral‐mimetic complexes. It is found that the BolA‐like dual ligands system exhibits significantly enhanced gene expression in both HeLa and 293T cell lines, as compared with poly(ethylenimine) PEI. These BolA‐like amphiphilic peptides are promising in clinical trials of gene therapy.

  相似文献   


9.
Clinical translation of nucleic acids drugs has been stunted by limited delivery options. Herein, we report a synthetic polymer designed to mimic viral mechanisms of delivery called VIPER (virus‐inspired polymer for endosomal release). VIPER is composed of a polycation block for condensation of nucleic acids, and a pH‐sensitive block for acid‐triggered display of a lytic peptide to promote trafficking to the cell cytosol. VIPER shows superior efficiencies compared to commercial agents when delivering genes to multiple immortalized cell lines. Importantly, in murine models, VIPER facilitates effective gene transfer to solid tumors.  相似文献   

10.
A hollow mesoporous silica nanoparticle (HMSNP) based drug/siRNA co‐delivery system was designed and fabricated, aiming at overcoming multidrug resistance (MDR) in cancer cells for targeted cancer therapy. The as‐prepared HMSNPs have perpendicular nanochannels connecting to the internal hollow cores, thereby facilitating drug loading and release. The extra volume of the hollow core enhances the drug loading capacity by two folds as compared with conventional mesoporous silica nanoparticles (MSNPs). Folic acid conjugated polyethyleneimine (PEI‐FA) was coated on the HMSNP surfaces under neutral conditions through electrostatic interactions between the partially charged amino groups of PEI‐FA and the phosphate groups on the HMSNP surfaces, blocking the mesopores and preventing the loaded drugs from leakage. Folic acid acts as the targeting ligand that enables the co‐delivery system to selectively bind with and enter into the target cancer cells. PEI‐FA‐coated HMSNPs show enhanced siRNA binding capability on account of electrostatic interactions between the amino groups of PEI‐FA and siRNA, as compared with that of MSNPs. The electrostatic interactions provide the feasibility of pH‐controlled release. In vitro pH‐responsive drug/siRNA co‐delivery experiments were conducted on HeLa cell lines with high folic acid receptor expression and MCF‐7 cell lines with low folic acid receptor expression for comparison, showing effective target delivery to the HeLa cells through folic acid receptor meditated cellular endocytosis. The pH‐responsive intracellular drug/siRNA release greatly minimizes the prerelease and possible side effects of the delivery system. By simultaneously delivering both doxorubicin (Dox) and siRNA against the Bcl‐2 protein into the HeLa cells, the expression of the anti‐apoptotic protein Bcl‐2 was successfully suppressed, leading to an enhanced therapeutic efficacy. Thus, the present multifunctional nanoparticles show promising potentials for controlled and targeted drug and gene co‐delivery in cancer treatment.  相似文献   

11.
12.
Producing meiosis‐competent germ cells (GCs) from embryonic stem cells (ESCs) is essential for developing advanced therapies for infertility. Here, a novel approach is presented for generation of GCs from ESCs. In this regard, microparticles (MPs) have been developed from alginate sulfate loaded with bone morphogenetic protein 4 (BMP4). The results here show that BMP4 release from alginate sulfate MPs is significantly retarded by the sulfated groups compared to neat alginate. Then, BMP4‐laden MPs are incorporated within the aggregates during differentiation of GCs from ESCs. It is observed that BMP4‐laden MPs increase GC differentiation from ESCs at least twofold compared to the conventional soluble delivery method. Interestingly, following meiosis induction, Dazl , an intrinsic factor that enables GCs to enter meiosis, and two essential meiosis genes (Stra8 and Smc1b ) are upregulated significantly in MP‐induced aggregates compared to aggregates, which are formed by the conventional method. Together, these data show that controlled delivery of BMP4 during ESC differentiation into GC establish meiosis‐competent GCs which can serve as an attractive GC source for reproductive medicine.

  相似文献   


13.
14.
This paper studies a kind of hollow nanospheres prepared by self‐assembly β‐cyclodextrins (β‐CDs) and poly(ethylene oxide)‐poly(propylene oxide)‐poly(ethylene oxide) (pluronic F127) for gene delivery. It was found that this kind of hollow nanospheres enable load PEI10K/DNA and the resulting F127 NH2 βCD/(PEI10K/DNA) with 0.08 µg/well DNA display equal or higher gene delivery capability compared to PEI10K/DNA with 1 µg/well DNA in the absence or presence of serum. The cytotoxicity of the nanospheres was over 100 times lower than that of PEI10K.

  相似文献   


15.
Poly(N‐methylvinylamines) with secondary amines can form complexes with plasmid DNA (pDNA) and provide transfection efficiency in HeLa cells in the same order as linear polyethyleneimine but with higher cell viability. Chemical modifications of poly(N‐methylvinylamine) backbones are performed to further improve transfection efficiency while maintaining low degree of cytotoxicity. In a first type of polymer, primary amino groups are incorporated via a copolymerization strategy. In a second one, primary amino and imidazole groups are incorporated also via a copolymerization strategy. In a third one, secondary amino groups are substituted with methylguanidine functions through a postpolymerization reaction. Thus, novel polymers of various molecular masses are synthesized, characterized, and their interaction with pDNA studied. Then, their transfection efficiency and cytotoxicity are tested in HeLa cells. Two polymethylvinylamine‐based copolymers, one containing 20% of imidazole moieties and another one composed of 12% of guanidinyl units allow remarkable transfection efficiency of HeLa, pulmonary (16HBE), skeletal muscle (C2C12), and dendritic (DC2.4) cells. Overall, this work thus identifies new promising DNA carriers and chemical modifications that improve the transfection efficiency while maintaining low degree of cytotoxicity.  相似文献   

16.
17.
18.
The mechanical and biological properties of silicate‐crosslinked PEO nanocomposites are studied. A strong correlation is observed between silicate concentration and mechanical properties. In vitro cell culture studies reveal that an increase in silicate concentration enhances the attachment and proliferation of human mesenchymal stem cells significantly. An upregulation in the expression of osteocalcin on nanocomposites compared to the tissue culture polystyrene control is observed. Together, these results suggest that silicate‐based nanocomposites are bioactive and have the potential to be used in a range of biotechnological and biomedical applications such as injectable matrices, biomedical coatings, drug delivery, and regenerative medicine.

  相似文献   


19.
We report that human mesenchymal stem cells (hMSCs) were successfully labeled with poly(lactide‐co‐glycolide) nanoparticles (PLGA NPs) surface‐conjugated quantum dots (QDs) (PLGA‐QD NPs) via endocytosis pathway. These NPs were not toxicity even treated with PLGA‐QD NPs at high concentrations for at least four weeks. Besides, PLGA‐QD NPs‐labeled hMSCs did not change their proliferation and differentiation capability toward the cell fates of adipocytes, osteocytes, and chrondrocytes. It's known that PLGA has been widely employed to act as delivery carrier which encapsulates drugs and releases them under a controlled way. Currently, we have also demonstrated that FITC‐loaded PLGA‐QD NPs degraded in hMSCs to achieve intracellular release of FITC. The aim of this research is to investigate viability, proliferation and differentiation capability and the potential for gene delivery of MSCs labeled with PLGA‐QD NPs. In addition to PLGA‐QD NPs, QDs alone were used to serve as a control set for comparison.  相似文献   

20.
In this paper, we present a facile strategy to synthesize hyaluronic acid (HA) conjugated mesoporous silica nanoparticles (MSP) for targeted enzyme responsive drug delivery, in which the anchored HA polysaccharides not only act as capping agents but also as targeting ligands without the need of additional modification. The nanoconjugates possess many attractive features including chemical simplicity, high colloidal stability, good biocompatibility, cell‐targeting ability, and precise cargo release, making them promising agents for biomedical applications. As a proof‐of‐concept demonstration, the nanoconjugates are shown to release cargoes from the interior pores of MSPs upon HA degradation in response to hyaluronidase‐1 (Hyal‐1). Moreover, after receptor‐mediated endocytosis into cancer cells, the anchored HA was degraded into small fragments, facilitating the release of drugs to kill the cancer cells. Overall, we envision that this system might open the door to a new generation of carrier system for site‐selective, controlled‐release delivery of anticancer drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号