首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a straightforward synthetic pathway to a set of six photoactivatable G‐quadruplex ligands with a validated G4‐binding motif (the bisquinolinium pyridodicarboxamide PDC‐360A) tethered through various spacers to two different photo‐cross‐linking groups: benzophenone and an aryl azide. The high quadruplex‐versus‐duplex selectivity of the PDC core was retained in the new derivatives and resulted in selective alkylation of two well‐known G‐quadruplexes (human telomeric G4 and oncogene promoter c‐myc G4) under conditions of harsh competition. The presence of two structurally different photoactivatable functions allowed the selective alkylation of G‐quadruplex structures at specific nucleobases and irreversible G4 binding. The topology and sequence of the quadruplex matrix appear to influence strongly the alkylation profile, which differs for the telomeric and c‐myc quadruplexes. The new compounds are photoactive in cells and thus provide new tools for studying G4 biology.  相似文献   

2.
Natural G‐quartets, a cyclic and coplanar array of four guanine residues held together through a Watson–Crick/Hoogsteen hydrogen‐bond network, have received recently much attention due to their involvement in G‐quadruplex DNA, an alternative higher‐order DNA structure strongly suspected to play important roles in key cellular events. Besides this, synthetic G‐quartets (SQ), which artificially mimic native G‐quartets, have also been widely studied for their involvement in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G‐quartets (iSQ), also named template‐assembled synthetic G‐quartets (TASQ), have been more sparingly investigated, despite a technological potential just as interesting. Herein, we report on a particular iSQ named PNADOTASQ, which demonstrates very interesting properties in terms of DNA and RNA interaction (notably its selective recognition of quadruplexes according to a bioinspired process) and catalytic activities, through its ability to perform peroxidase‐like hemin‐mediated oxidations either in an autonomous fashion (i.e., as pre‐catalyst for TASQzyme reactions) or in conjunction with quadruplex DNA (i.e., as enhancing agents for DNAzyme processes). These results provide a solid scientific basis for TASQ to be used as multitasking tools for bionanotechnological applications.  相似文献   

3.
4.
5.
A trap that closes with a “click” : The copper‐catalyzed azide–alkyne cycloaddition can occur in different G‐quadruplex structures (see scheme). The species trapped by the click reaction can then be separated and analyzed. By using this approach, a DNA–RNA hybrid‐type G‐quadruplex structure formed by human telomeric DNA and RNA sequences was detected.

  相似文献   


6.
This review deals with recent progress in the synthesis and evaluation of our telomestatin‐inspired macrocyclic polyoxazoles as G‐quadruplex (G4) ligands. The hexaoxazole derivatives (6OTDs) interact with and stabilize G4‐forming oligonucleotides, depending upon the character of the side chain functional groups. Cationic functional groups are particularly effective due to their secondary interaction with phosphate in the DNA backbone. On the other hand, heptaoxazole derivatives (7OTDs) showed potent G4‐binding and stabilization activity regardless of the functional groups on the side chain. A caged G4 ligand, Y2Nv2‐6OTD ( 7 ), and a fluorescent G4 ligand, L1BOD‐7OTD ( 13 ), have been synthesized.  相似文献   

7.
8.
G‐quadruplexes are four‐stranded nucleic acid structures that are built from consecutively stacked guanine tetrad (G‐tetrad) assemblies. The simultaneous incorporation of two guanine base lesions, xanthine (X) and 8‐oxoguanine (O), within a single G‐tetrad of a G‐quadruplex was recently shown to lead to the formation of a stable G?G?X?O tetrad. Herein, a judicious introduction of X and O into a human telomeric G‐quadruplex‐forming sequence is shown to reverse the hydrogen‐bond polarity of the modified G‐tetrad while preserving the original folding topology. The control exerted over G‐tetrad polarity by joint X?O modification will be valuable for the design and programming of G‐quadruplex structures and their properties.  相似文献   

9.
10.
11.
DNA and RNA G‐quadruplexes (G4) are unusual nucleic acid structures involved in a number of key biological processes. RNA G‐quadruplexes are less studied although recent evidence demonstrates that they are biologically relevant. Compared to DNA quadruplexes, RNA G4 are generally more stable and less polymorphic. Duplexes and quadruplexes may be combined to obtain pure tetrameric species. Here, we investigated whether classical antiparallel duplexes can drive the formation of antiparallel tetramolecular quadruplexes. This concept was first successfully applied to DNA G4. In contrast, RNA G4 were found to be much more unwilling to adopt the forced antiparallel orientation, highlighting that the reason RNA adopts a different structure must not be sought in the loops but in the G‐stem structure itself. RNA antiparallel G4 formation is likely to be restricted to a very small set of peculiar sequences, in which other structural features overcome the formidable intrinsic barrier preventing its formation.  相似文献   

12.
13.
Base pairs, magic hands : An additional base‐pairing duplex is utilized to control the folding topologies of a bimolecular G‐quadruplex formed by two G‐rich single‐stranded DNAs (see picture), which is dependent on the position of base pairs. This study clearly reveals an important intrinsic role of additional base pairs in the G‐quadruplex structure, and also provides a clue to the formation mechanism of the G‐quadruplex‐based DNAzyme.

  相似文献   


14.
15.
A unimolecular G‐quadruplex with a hybrid‐type topology and propeller, diagonal, and lateral loops was examined for its ability to undergo structural changes upon specific modifications. Substituting 2′‐deoxy‐2′‐fluoro analogues with a propensity to adopt an anti glycosidic conformation for two or three guanine deoxyribonucleosides in syn positions of the 5′‐terminal G‐tetrad significantly alters the CD spectral signature of the quadruplex. An NMR analysis reveals a polarity switch of the whole tetrad with glycosidic conformational changes detected for all four guanine nucleosides in the modified sequence. As no additional rearrangement of the overall fold occurs, a novel type of G‐quadruplex is formed with guanosines in the four columnar G‐tracts lined up in either an all‐syn or an all‐anti glycosidic conformation.  相似文献   

16.
A photoreactive molecular dye targeting the G‐quadruplex nucleic acid (G4) of the human telomeric sequence Tel22, and several mutated analogues, was activated by green light (λ=532 nm). Highly selective covalent modification of G4 versus single‐stranded and double‐stranded DNA was achieved with efficiency up to 64 %. The phenoxyl radical was generated and detected by laser‐flash photolysis as a reactive intermediate that targeted loop thymine residues. These insights may suggest a non‐invasive tool for selective nucleic acid tagging and “pull‐down” cellular applications.  相似文献   

17.
Sequence inversion in G‐rich DNA from 5′→3′ to 3′→5′ exerts a substantial effect on the number of structures formed, while the type of G‐quadruplex fold is in fact determined by the presence of K+ or Na+ ions. The melting temperatures of G‐quadruplexes adopted by oligonucleotides with sequences in the 5′→3′ direction are higher than those of their 3′→5′ counterparts with both KCl and NaCl. CD, UV, and NMR spectroscopy demonstrates the importance of primary sequence for the structural diversity of G‐quadruplexes. The changes introduced by mere sequence reversal of the G‐rich DNA segment have a substantial impact on the polymorphic nature of the resulting G‐quadruplexes and their potential physiological roles. The insights resulting from this study should enable extension of the empirical rules for the prediction of G‐quadruplex topology.  相似文献   

18.
19.
We report herein a solvent‐free and microwaved‐assisted synthesis of several water soluble acyclic pentaheteroaryls containing 1,2,4‐oxadiazole moieties ( 1 – 7 ). Their binding interactions with DNA quadruplex structures were thoroughly investigated by FRET melting, fluorescent intercalator displacement assay (G4‐FID) and CD spectroscopy. Among the G‐quadruplexes considered, attention was focused on telomeric repeats together with the proto‐oncogenic c‐kit sequences and the c‐myc oncogene promoter. Compound 1 , and to a lesser extent 2 and 5 , preferentially stabilise an antiparallel structure of the telomeric DNA motif, and exhibit an opposite binding behaviour to structurally related polyoxazole ( TOxaPy ), and do not bind duplex DNA. The efficiency and selectivity of the binding process was remarkably controlled by the structure of the solubilising moieties.  相似文献   

20.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号