首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
We report a novel strategy for the green synthesis of calcium carbonate (CaCO3) microspheres by using four vegetables: potato, cucumber, aubergine, and carrot. The products were characterized by scanning electron microscopy, X‐ray powder diffractometry and/or Fourier transform infrared spectroscopy. The results show that the spherical calcite crystals are obtained in the presence of potato, cucumber and aubergine extracts, while uniform vaterite and calcite mixed microspheres are produced with the extracts of carrot. The possible formation mechanism of the CaCO3 microspheres by using vegetables is also discussed, suggesting that the biomolecules especially proteins may induce and control the nucleation and growth of CaCO3 crystals. CaCO3 is an important biomineral and inorganic material. Uniform particles have numerous important applications in many areas. Therefore, this study is very significant not only for expanding the scope of crystal engineering, but also for biomineralization research and green synthesis of functional inorganic materials.  相似文献   

3.
Two‐dimensional arrays of polymer nanobowls can be fabricated by an oxygen plasma etching technique. The 2D colloidal crystals made of SiO2@PMMA particles are fabricated by a convective self‐assembly method. The oxygen plasma treatment is applied to the colloidal crystals to selectively etch the PMMA shells. Because the oxygen plasma etching proceeds in a layer‐by‐layer manner from top to bottom, the top parts of the PMMA shells are etched first, and the silica cores are exposed to the atmosphere, which can be removed with HF, leaving the bowl‐shaped PMMA shells to form 2D arrays of polymer nanobowls. The size and packing density of the nanobowl arrays can be tuned with tightly controlled etching time. The polymer nanobowl arrays can also serve as a template to direct the growth of calcium carbonate within the interstice of the nanobowls.  相似文献   

4.
Early‐stage reaction mechanisms for aragonite‐promoting systems are relatively unknown compared to the more thermodynamically stable calcium carbonate polymorph, calcite. Using cryoTEM and SEM, the early reaction stages taking place during aragonite formation were identified in a highly supersaturated solution using an alcohol–water solvent, and an overall particle attachment growth mechanism was described for the system. In vitro evidence is provided for the solid‐state transformation of amorphous calcium carbonate to aragonite, demonstrating the co‐existence of both amorphous and crystalline material within the same aragonite needle. This supports non‐classical formation of aragonite within both a synthetic and biological context.  相似文献   

5.
Besides studies on the mineralization process, research on the demineralization of minerals provides another way to understand the crystallization mechanism of biominerals and fabricate crystals with complicated morphologies. The formation of ordered arrays of c‐axis‐oriented calcite microneedles with a tri‐symmetric structure and lengths of more than 20 μm was realized on a large scale for the first time through anisotropic dissolution of calcite substrates in undersaturated aqueous solution in the presence of ammonium salts. The lengths and the aspect ratios of the calcite microneedles can be tuned by simply changing the concentrations of the ammonium salts and the dissolution time. The shape of the transverse cross sections of the calcite microneedles obtained in the presence of NH4Cl and NH4Ac is almost regularly triangular. The tri‐symmetric transverse cross‐section geometry of the calcite microneedles could be attributed to the tri‐symmetric feature of rhombohedral calcite atomic structures, the synergetic interactions between electrostatic interaction of ammonium ions and dangling surface carbonate groups, and the ion incorporation of halide ions.  相似文献   

6.
本文研究了二维琼脂凝胶圆盘体系中碳酸钙分形结构的形成过程,发现随着反应时间的增加,碳酸钙的形态经过了细小颗粒-枝晶结构-分形结构的转变过程,该分形结构实际上是由纳微米级碳酸钙晶粒聚集而成的。增加琼脂和反应物的浓度,碳酸钙微晶的形貌和尺寸发生了变化,呈现立方体与球形,由其构成的分形结构的尺寸也随着改变,但碳酸钙的晶型均为方解石型,无明显变化。二维凝胶体系中碳酸钙分形结构的形成主要与琼脂极性基团提供成核位点、多糖的网络结构、沉淀剂离子扩散受限有关。  相似文献   

7.
在Triton X-100/n-C10H21OH/H2O体系中,低角X射线衍射测试表明层状液晶的溶剂层厚度小于3 nm。利用层状液晶为模板制备了CaCO3纳米微粒,并用透射电子显微镜(TEM)、X射线衍射(XRD)和选区电子衍射(SAED)进行了表征。TEM结果表明所得CaCO3纳米粒子的形貌为球形,粒径在2~8 nm,分布较窄。XRD表明CaCO3纳米微粒的物相为方解石型和球霰石型混合结构。在制备过程中,Ca(OH)2的加入和CaCO3纳米微粒的析出并未破坏层状液晶的对称性和长程有序性。此外,在Triton X-100/CH3CH2OH体系中,研究了CaCO3纳米微粒的生长行为,发现小的纳米微粒先通过导向聚集生长成小的梭状物,然后小的梭状物继续生长,最后发生Ostwald陈化形成较为均一的两头尖的带状纳米结构,其宽度在50~200 nm,长度约为2 μm。  相似文献   

8.
Biomedical applications of nontoxic amorphous calcium carbonate (ACC) nanoparticles have mainly been restricted because of their aqueous instability. To improve their stability in physiological environments while retaining their pH‐responsiveness, a novel nanoreactor of ACC–doxorubicin (DOX)@silica was developed for drug delivery for use in cancer therapy. As a result of its rationally engineered structure, this nanoreactor maintains a low drug leakage in physiological and lysosomal/endosomal environments, and responds specifically to pH 6.5 to release the drug. This unique ACC–DOX@silica nanoreactor releases DOX precisely in the weakly acidic microenvironment of cancer cells and results in efficient cell death, thus showing its great potential as a desirable chemotherapeutic nanosystem for cancer therapy.  相似文献   

9.
The 1D complex [(CuL0.5H2O) ? H2O]n ( 1 ) (H4L=2,2′‐bipyridine‐3,3′,6,6′‐tetracarboxylic acid) undergoes an irreversible thermally triggered single‐crystal‐to‐single‐crystal (SCSC) transformation to produce the 3D anhydrous complex [CuL0.5]n ( 2 ). This SCSC structural transformation was confirmed by single‐crystal X‐ray diffraction analysis, thermogravimetric (TG) analysis, powder X‐ray diffraction (PXRD) patterns, variable‐temperature powder X‐ray diffraction (VT–PXRD) patterns, and IR spectroscopy. Structural analyses reveal that in complex 2 , though the initial 1D chain is still retained as in complex 1 , accompanied with the Cu‐bound H2O removed and new O(carboxyl)?Cu bond forming, the coordination geometries around the CuII ions vary from a distorted trigonal bipyramid to a distorted square pyramid. With the drastic structural transition, significant property changes are observed. Magnetic analyses show prominent changes from antiferromagnetism to weak ferromagnetism due to the new formed Cu1‐O‐C‐O‐Cu4 bridge. The catalytic results demonstrate that, even though both solid‐state materials present high catalytic activity for the synthesis of 2‐imidazolines derivatives and can be reused, the activation temperature of complex 1 is higher than that of complex 2 . In addition, a possible pathway for the SCSC structural transformations is proposed.  相似文献   

10.
Amorphous intermediate phases are vital precursors in the crystallization of many biogenic minerals. While inherent short‐range orders have been found in amorphous calcium carbonates (ACCs) relating to different crystalline forms, it has never been clarified experimentally whether such orders already exist in very small clusters less than 2 nm in size. Here, we studied the stability and structure of 10,12‐pentacosadiynoic acid (PCDA) protected ACC clusters with a core size of ca. 1.4 nm consisting of only seven CaCO3 units. Ligand concentration and structure are shown to be key factors in stabilizing the ACC clusters. More importantly, even in such small CaCO3 entities, a proto‐calcite short‐range order can be identified but with a relatively high degree of disorder that arises from the very small size of the CaCO3 core. Our findings support the notion of a structural link between prenucleation clusters, amorphous intermediates, and final crystalline polymorphs, which appears central to the understanding of polymorph selection.  相似文献   

11.
12.
A tetrathiafulvalene (TTF)‐conjugated bistetracene was synthesized and characterized in the molecular electronic structures based on the spectroscopic measurements and the single‐crystal X‐ray diffraction analysis. UV/Vis absorption and electrochemical measurements of 5 revealed the considerable electronic communication between two tetracenedithiole units by through‐bond and/or through‐space interactions. The difference in the crystal‐packing structures of 5 , showing polymorphism, results in a variety of intermolecular electronic‐coupling pattern. Of these, the π‐stacking structure of 5 A gave a large transfer integral of HOMOs (97 meV), which value is beyond hexacene and rubrene, thus, quite beneficial to achieve the high hole mobility.  相似文献   

13.
2,4‐Trifluoromethylquinoline (TFMAQ) derivatives that have amine ( 1 ), methylamine ( 2 ), phenylamine ( 3 ), and dimethylamine ( 4 ) substituents at the 7‐position of the quinoline ring were prepared and crystallized. Six crystals including the crystal polymorphs of 2 (crystal GB and YG) and 3 (crystal B and G) were obtained and characterized by X‐ray crystallography. In solution, TFMAQ derivatives emitted relatively strong fluorescence (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =418–469 nm and Φf(s)=0.23–0.60) depending on the solvent polarity. From Lippert–Mataga plots, Δμ values in the range of 7.8–14 D were obtained. In the crystalline state, TFMAQ derivatives emitted at longer wavelengths (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464–530 nm) with lower intensity (Φf(c)=0.01–0.28) than those in n‐hexane solution. The polymorphous crystals of 2 and 3 emitted different colors: 2 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =470 and 530 nm with Φf(c)=0.04 and approximately 0.01 for crystal GB and YG, respectively; and 3 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464 and 506 nm with Φf(c)=0.28 and approximately 0.28 for crystal B and G, respectively. In both crystal polymorphs of 2 and 3 , crystals GB and G showed emission color changes by heating/melting/cooling cycles that were representative. By following the color changes in heating at the temperature below the melting point with X‐ray diffraction measurements and X‐ray crystallography, the single‐crystal‐to‐single‐crystal transformations from crystal GB to YG for 2 and from crystal B to G for 3 were revealed.  相似文献   

14.
碳酸岩矿化菌诱导碳酸钙晶体形成机理研究   总被引:14,自引:0,他引:14  
成亮  钱春香  王瑞兴  王剑云 《化学学报》2007,65(19):2133-2138
选用碳酸盐矿化菌(芽孢杆菌系), 分别研究了不同浓度细菌液、细菌体及其分泌物对碳酸钙晶体形成的影响. 研究表明, 细菌液浓度越高, 控制碳酸钙晶体形貌作用越显著; 细菌体为碳酸钙结晶提供异相成核点而对形貌并没有实质影响; 细菌分泌物可诱导出球形、纺锤形等多种形态亚稳态球霰石; 在微生物环境的长期作用下可形成有机-无机复合碳酸钙硬质膜. 通过对电导率测定结果和碳酸钙红外图谱分析得出, 生物有机质分子链的极性基团(COOH, C=O等)与Ca2+产生静电、配位等一系列作用, 调控晶体的生长. 本研究对于微生物诱导碳酸钙的工程性应用, 如混凝土微裂缝修复、古建筑表面防护处理、微纳米碳酸钙颗粒制备等具有一定指导意义.  相似文献   

15.
The X‐ray crystal and NMR spectroscopic structures of the peptide drug candidate Cilengitide (cyclo(RGDf(NMe)Val)) in various solvents are obtained and compared in addition to the integrin receptor bound conformation. The NMR‐based solution structures exhibit conformations closely resembling the X‐ray structure of Cilengitide bound to the head group of integrin αvβ3. In contrast, the structure of pure Cilengitide recrystallized from methanol reveals a different conformation controlled by the lattice forces of the crystal packing. Molecular modeling studies of the various ligand structures docked to the αvβ3 integrin revealed that utilization of the solid‐state conformation of Cilengitide leads—unlike the solution‐based structures—to a mismatch of the ligand–receptor interactions compared with the experimentally determined structure of the protein–ligand complex. Such discrepancies between solution and crystal conformations of ligands can be misleading during the structure‐based lead optimization process and should thus be taken carefully into account in ligand orientated drug design.  相似文献   

16.
The purpose of this work was to detect the properties of African green monkey renal epithelial cells (Vero) after oxidative injury and to study the mediation of the injured Vero on aggregation and formation of calcium oxalate crystals. This injury model was induced by 0.15 mmol/L H2O2 according to the pretest evaluation. The results suggested that H2O2 could injure Vero significantly and decrease cell viability in a time‐dependent manner for exposure time of 0.5–2 h. After cell injury, the indexes connected with oxidative injury changed. The malondialdehyde (MDA) content and osteopontin (OPN) expression increased, while superoxide dismutase (SOD) level decreased. It resulted in the increase of both the amount of CaOxa crystals and the degree of crystal aggregation on the injured cells. This work indicated that injured cells promoted the formation of calcium oxalate monohydrate (COM) crystals, thus increased the risk of formation of urinary stone.  相似文献   

17.
The formation of the antimonato polyoxovanadates [V14Sb8(C6H15N3)4O42(H2O)] ? 4H2O ( 1 ), (C6H17N3)2[V15Sb6(C6H15N3)2O42(H2O)] ? 2.5H2O ( 2 ), {C6H15N3}4[V16Sb4O42] 2H2O ( 3 ) (C6H15N3=1‐(2‐aminoethyl)piperazine, AEP) has been studied under solvothermal conditions by using in situ energy dispersive X‐ray diffraction (EDRXD). The syntheses were performed with an identical ratio for Sb2O3 and NH4VO3. If the reactions slurries are not stirred during the solvothermal reaction and by applying 70–75 % amine concentration, the products contain all three compounds, whereas 3 is observed at 80 %. Under stirring conditions, variation of the concentration of AEP led to crystallization of the three different compounds at distinct concentrations, that is, 1 is formed at 75 %, 1 and 2 between 75 and 80 % and 3 at 80 %. At an amine concentration of 77.5 %, first reflections of 2 occurred and at later stages, compound 1 started to crystallize. The sample with the lowest number of VIV species was formed at the lowest amine concentration, whereas crystallization of 3 required the highest concentration. The formation of the compounds occurred without crystalline intermediates and/or precursors. With increasing reaction temperature, the incubation time was significantly reduced.  相似文献   

18.
19.
The formation of a new, dihydrate crystalline form of 5‐methyluridine (m5U) was selectively induced by a protein additive, antifreeze protein (AFP) in a highly efficient manner (in 10?6 molar scale, whereas known kinetic additives need 0.1 molar scale). The hemihydrate form (form I, the only previously known crystalline form of m5U) and the dihydrate form of m5U (form II) obtained herein were characterized using X‐ray crystallography and differential scanning calorimetry (DSC). Compared to form I, remarkably, form II is thermodynamically and kinetically less preferred. The presence of AFP can selectively inhibit the appearance of form I and hence allows the growth of form II, the pure form of which cannot grow directly from m5U supersaturated solutions under the same conditions. An explanation supported by both experimental and theoretical results is provided for the AFP‐induced selection process. Implications on AFP‐induced ice shape changes are also discussed. Control of crystallization from supersaturated solutions is of great interest in both fundamental research and practical applications in fields like chemistry, pharmacology and materials science. These findings suggest that crystallization processes with AFPs could be valuable for selective growth of hydrates and polymorphs of important pharmaceutical compounds.  相似文献   

20.
Given increasing environmental issues due to the large usage of non‐biodegradable plastics based on petroleum, new plastic materials, which are economic, environmentally friendly, and recyclable are in high demand. One feasible strategy is the bio‐inspired synthesis of mineral‐based hybrid materials. Herein we report a facile route for an amorphous CaCO3 (ACC)‐based hydrogel consisting of very small ACC nanoparticles physically cross‐linked by poly(acrylic acid). The hydrogel is shapeable, stretchable, and self‐healable. Upon drying, the hydrogel forms free‐standing, rigid, and transparent objects with remarkable mechanical performance. By swelling in water, the material can completely recover the initial hydrogel state. As a matrix, thermochromism can also be easily introduced. The present hybrid hydrogel may represent a new class of plastic materials, the “mineral plastics”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号