首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Salts that contain radical cations of benzidine (BZ), 3,3′,5,5′‐tetramethylbenzidine (TMB), 2,2′,6,6′‐tetraisopropylbenzidine (TPB), and 4,4′‐terphenyldiamine (DATP) have been isolated with weakly coordinating anions [Al(ORF)4]? (ORF=OC(CF3)3) or SbF6?. They were prepared by reaction of the respective silver(I) salts with stoichiometric amounts of benzidine or its alkyl‐substituted derivatives in CH2Cl2. The salts were characterized by UV absorption and EPR spectroscopy as well as by their single‐crystal X‐ray structures. Variable‐temperature UV/Vis absorption spectra of BZ . +[Al(ORF)4]? and TMB . +[Al(ORF)4]? in acetonitrile indicate an equilibrium between monomeric free radical cations and a radical‐cation dimer. In contrast, the absorption spectrum of TPB . +SbF6? in acetonitrile indicates that the oxidation of TPB only resulted in a monomeric radical cation. Single‐crystal X‐ray diffraction studies show that in the solid state BZ and its methylation derivative (TMB) form radical‐cation π dimers upon oxidation, whereas that modified with isopropyl groups (TPB) becomes a monomeric free radical cation. By increasing the chain length, π stacks of π dimers are obtained for the radical cation of DATP. The single‐crystal conductivity measurements show that monomerized or π‐dimerized radicals (BZ . +, TMB . +, and TPB . +) are nonconductive, whereas the π‐stacked radical (DATP . +) is conductive. A conduction mechanism between chains through π stacks is proposed.  相似文献   

2.
We have used model tripeptides GXW (with X being one of the amino acid residues glycine (G), alanine (A), leucine (L), phenylalanine (F), glutamic acid (E), histidine (H), lysine (K), or arginine (R)) to study the effects of the basicity of the amino acid residue on the radical migrations and dissociations of odd‐electron molecular peptide radical cations M.+ in the gas phase. Low‐energy collision‐induced dissociation (CID) experiments revealed that the interconvertibility of the isomers [G.XW]+ (radical centered on the N‐terminal α‐carbon atom) and [GXW].+ (radical centered on the π system of the indolyl ring) generally increased upon increasing the proton affinity of residue X. When X was arginine, the most basic amino acid, the two isomers were fully interconvertible and produced almost identical CID spectra despite the different locations of their initial radical sites. The presence of the very basic arginine residue allowed radical migrations to proceed readily among the [G.RW]+ and [GRW].+ isomers prior to their dissociations. Density functional theory calculations revealed that the energy barriers for isomerizations among the α‐carbon‐centered radical [G.RW]+, the π‐centered radical [GRW].+, and the β‐carbon‐centered radical [GRWβ.]+ (ca. 32–36 kcal mol−1) were comparable with those for their dissociations (ca. 32–34 kcal mol−1). The arginine residue in these GRW radical cations tightly sequesters the proton, thereby resulting in minimal changes in the chemical environment during the radical migrations, in contrast to the situation for the analogous GGW system, in which the proton is inefficiently stabilized during the course of radical migration.  相似文献   

3.
Attempts to prepare previously unknown simple and very Lewis acidic [RZn]+[Al(ORF)4]? salts from ZnR2, AlR3, and HO?RF delivered the ion‐like RZn(Al(ORF)4) (R=Me, Et; RF=C(CF3)3) with a coordinated counterion, but never the ionic compound. Increasing the steric bulk in RZn+ to R=CH2CMe3, CH2SiMe3, or Cp*, thus attempting to induce ionization, failed and led only to reaction mixtures including anion decomposition. However, ionization of the ion‐like EtZn(Al(ORF)4) compound with arenes yielded the [EtZn(arene)2]+[Al(ORF)4]? salts with arene=toluene, mesitylene, or o‐difluorobenzene (o‐DFB)/toluene. In contrast to the ion‐like EtZn(η3‐C6H6)(CHB11Cl11), which co‐crystallizes with one benzene molecule, the less coordinating nature of the [Al(ORF)4]? anion allowed the ionization and preparation of the purely organometallic [EtZn(arene)2]+ cation. These stable materials have further applications as, for example, initiators of isobutene polymerization. DFT calculations to compare the Lewis acidities of the zinc cations to those of a large number of organometallic cations were performed on the basis of fluoride ion affinity. The complexation energetics of EtZn+ with arenes and THF was assessed and related to the experiments.  相似文献   

4.
One‐electron oxidation of the stibines Aryl3Sb ( 1 , Aryl=2,6‐i Pr2‐4‐OMe‐C6H2; 2 , Aryl=2,4,6‐i Pr3‐C6H2) with AgSbF6 and NaBArylF4 (ArylF=3,5‐(CF3)2C6H3) afforded the first structurally characterized examples of antimony‐centered radical cations 1 .+[BArylF4] and 2 .+[BArylF4]. Their molecular and electronic structures were investigated by single‐crystal X‐ray diffraction, electron paramagnetic resonance spectroscopy (EPR) and UV/Vis absorption spectroscopy, in conjunction with theoretical calculations. Moreover, their reactivity was investigated. The reaction of 2 .+[BArylF4] and p ‐benzoquinone afforded a dinuclear antimony dication salt 3 2+[BArylF4]2, which was characterized by NMR spectroscopy and X‐ray diffraction analysis. The formation of the dication 3 2+ further confirms that the isolated stibine radical cations are antimony‐centered.  相似文献   

5.
One‐electron oxidation of the stibines Aryl3Sb ( 1 , Aryl=2,6‐i Pr2‐4‐OMe‐C6H2; 2 , Aryl=2,4,6‐i Pr3‐C6H2) with AgSbF6 and NaBArylF4 (ArylF=3,5‐(CF3)2C6H3) afforded the first structurally characterized examples of antimony‐centered radical cations 1 .+[BArylF4] and 2 .+[BArylF4]. Their molecular and electronic structures were investigated by single‐crystal X‐ray diffraction, electron paramagnetic resonance spectroscopy (EPR) and UV/Vis absorption spectroscopy, in conjunction with theoretical calculations. Moreover, their reactivity was investigated. The reaction of 2 .+[BArylF4] and p ‐benzoquinone afforded a dinuclear antimony dication salt 3 2+[BArylF4]2, which was characterized by NMR spectroscopy and X‐ray diffraction analysis. The formation of the dication 3 2+ further confirms that the isolated stibine radical cations are antimony‐centered.  相似文献   

6.
The C3‐symmetric propeller‐chiral compounds (P,P,P)‐ 1 and (M,M,M)‐ 1 with planar π‐cores perpendicular to the C3‐axis were synthesized in optically pure states. (P,P,P)‐ 1 possesses two distinguishable propeller‐chiral π‐faces with rims of different heights named the (P/L)‐face and (P/H)‐face. Each face is configurationally stable because of the rigid structure of the helicenes contained in the π‐core. (P,P,P)‐ 1 formed dimeric aggregates in organic solutions as indicated by the results of 1H NMR, CD, and UV/Vis spectroscopy and vapor pressure osmometry analyses. The (P/L)/(P/L) interactions were observed in the solid state by single‐crystal X‐ray analysis, and they were also predominant over the (P/H)/(P/H) and (P/L)/(P/H) interactions in solution, as indicated by the results of 1H and 2D NMR spectroscopy analyses. The dimerization constant was obtained for a racemic mixture, which showed that the heterochiral (P,P,P)‐ 1 /(M,M,M)‐ 1 interactions were much weaker than the homochiral (P,P,P)‐ 1 /(P,P,P)‐ 1 interactions. The results indicated that the propeller‐chiral (P/L)‐face interacts with the (P/L)‐face more strongly than with the (P/H)‐face, (M/L)‐face, and (M/H)‐face. The study showed the π‐face‐selective aggregation and π‐face chiral recognition of the configurationally stable propeller‐chiral molecules.  相似文献   

7.
In a new oxidative route, Ag+[Al(ORF)4]? (RF=C(CF3)3) and metallic indium were sonicated in aromatic solvents, such as fluorobenzene (PhF), to give a precipitate of silver metal and highly soluble [In(PhF)n]+ salts (n=2, 3) with the weakly coordinating [Al(ORF)4]? anion in quantitative yield. The In+ salt and the known analogous Ga+[Al(ORF)4]? were used to synthesize a series of homoleptic PR3 phosphane complexes [M(PR3)n]+, that is, the weakly PPh3‐bridged [(Ph3P)3In–(PPh3)–In(PPh3)3]2+ that essentially contains two independent [In(PPh3)3]+ cations or, with increasing bulk of the phosphane, the carbene‐analogous [M(PtBu3)2]+ (M=Ga, In) cations. The MI? P distances are 27 to 29 pm longer for indium, and thus considerably longer than the difference between their tabulated radii (18 pm). The structure, formation, and frontier orbitals of these complexes were investigated by calculations at the BP86/SV(P), B3LYP/def2‐TZVPP, MP2/def2‐TZVPP, and SCS‐MP2/def2‐TZVPP levels.  相似文献   

8.
para‐Phenylene‐bridged spirobi(triarylamine) dimer 2 , in which π conjugation through four redox‐active triarylamine subunits is partially segregated by the unique perpendicular conformation, was prepared and characterized by structural, electrochemical, and spectroscopic methods. Quantum chemical calculations (DFT and CASSCF) predicted that the frontier molecular orbitals of 2 are virtually fourfold degenerate, so that the oxidized states of 2 can give intriguing electronic and magnetic properties. In fact, the continuous‐wave ESR spectroscopy of radical cation 2 .+ showed that the unpaired electron was trapped in the inner two redox‐active dianisylamine subunits, and moreover was fully delocalized over them. Magnetic susceptibility measurements and pulsed ESR spectroscopy of the isolated salts of 2 , which can be prepared by treatment with SbCl5, revealed that the generated tetracation 2 4+ decomposed mainly into a mixture of 1) a decomposed tetra(radical cation) consisting of a tri(radical cation) moiety and a trianisylamine radical cation moiety (≈75 %) and 2) a diamagnetic quinoid dication in a tetraanisyl‐p‐phenylendiamine moiety and two trianisylamine radical cation moieties (≈25 %). Furthermore, the spin‐quartet state of the tri(radical cation) moiety in the decomposed tetra(radical cation) was found to be in the ground state lying 30 cal mol?1 below the competing spin‐doublet state.  相似文献   

9.
Ion‐like ethylzinc(II) compounds with weakly coordinating aluminates [Al(ORF)4]? and [(RFO)3Al‐F‐Al(ORF)3]? (RF=C(CF3)3) were synthesized in a one‐pot reaction and fully characterized by single‐crystal X‐ray diffraction, NMR and vibrational spectroscopy, and by quantum chemical calculations. The catalytic activity of ion‐like Et‐Zn[Al(ORF)4] in intermolecular hydroamination and in the unusual double hydroamination of anilines and alkynes was investigated. Favorable performance was also found in comparison to the Et2Zn/ [PhNMe2H]+[B(C6F5)4]? system generated in situ at lower catalyst loadings of 2.5 mol %.  相似文献   

10.
We show that the radical cations of adamantane (C10H16.+, 1 H.+) and perdeuteroadamantane (C10D16.+, 1 D.+) are stable species in the gas phase. The radical cation of adamantylideneadamantane (C20H28.+, 2 H.+) is also stable (as in solution). By using the natural 13C abundances of the ions, we determine the rate constants for the reversible isergonic single‐electron transfer (SET) processes involving the dyads 1 H.+/ 1 H, 1 D.+/ 1 D and 2 H.+/ 2 H. Rate constants for the reaction 1 H.++ 1 D? 1 H+ 1 D.+ are also determined and Marcus’ cross‐term equation is shown to hold in this case. The rate constants for the isergonic processes are extremely high, practically collision‐controlled. Ab initio computations of the electronic coupling (HDA) and the reorganization energy (λ) allow rationalization of the mechanism of the process and give insights into the possible role of intermediate complexes in the reaction mechanism.  相似文献   

11.
The novel title coordination polymer, {[Cu(C8H4O4)(C10H9N3)]·H2O}n, synthesized by the slow‐diffusion method, takes the form of one‐dimensional zigzag chains built up of CuII cations linked by benzene‐1,3‐dicarboxylate (ipht) anions. An exceptional characteristic of this structure is that it belongs to a small group of metal–organic polymers where ipht is coordinated as a bridging tridentate ligand with monodentate and chelate coordination of individual carboxylate groups. The CuII cation has a highly distorted square‐pyramidal geometry formed by three O atoms from two ipht anions and two N atoms from a di‐2‐pyridylamine (dipya) ligand. The zigzag chains, which run along the b axis, further construct a three‐dimensional metal–organic framework via strong face‐to‐face π–π interactions and hydrogen bonds. A solvent water molecule is linked to the different carboxylate groups via hydrogen bonds. Thermogravimetric and differential scanning calorimetric analyses confirm the strong hydrogen bonding.  相似文献   

12.
In this paper, nanosecond laser flash photolysis has been used to investigate the influence of metal ions on the kinetics of radical cations of a range of carotenoids (astaxanthin (ASTA), canthaxanthin (CAN), and β‐carotene (β‐CAR)) and various electron donors (1,4‐diphenyl‐1,3‐butadiene (14DPB), 1,6‐diphenyl‐1,3,5‐hexatriene (16DPH), 4‐methoxy‐trans‐stilbene (4 MeOSt), and trans‐stilbene (trans‐St)) in benzonitrile. Radical cations have been generated by means of photosensitized electron‐transfer (ET) using 1,4‐dicyanonaphthalene (14DCN) and biphenyl (BP). The kinetic decay of CAR . + shows a strong dependence on the identity of the examined metal ion. For example, whereas NaClO4 has a weak effect on the kinetics of CAR . +, Ni(ClO4)2 causes a strong retardation of the decay of CAR . +. It is also interesting to note that Mn2+, which is a biologically relevant metal ion, shows the strongest effect of all the investigated metal ions (e.g., in the presence of Mn2+ ions, the half‐life (t1/2) of CAN . + (t1/2>90 ms) is more than three orders of magnitude higher than in the absence of the metal ions (t1/2≈16 μs)). Furthermore, the influence of metal‐ion and oxygen concentrations on the kinetics of CAR . + reveals their pronounced effect on the kinetic decay of CAR . +. However, these remarkable effects are greatly diminished if either oxygen or metal ions are removed from the investigated solutions. Therefore, it can be concluded that oxygen and metal ions interact cooperatively to induce the observed substantial effects on the stabilities of CAR . +. These results are the first direct observation of the major role of oxygen in the stabilization of radical cations, and they support the earlier mechanism proposed by Astruc et al. for the role of oxygen in the inhibition of cage reactions. On the basis of these results, the factors that affect the stability of radical cations are discussed and the mechanism that shows the role of oxygen and metal ions in the enhancement of radical‐cation stability is described.  相似文献   

13.
The D‐π‐A type phosphonium salts in which electron acceptor (A=‐+PR3) and donor (D=‐NPh2) groups are linked by polarizable π‐conjugated spacers show intense fluorescence that is classically ascribed to excited‐state intramolecular charge transfer (ICT). Unexpectedly, salts with π=‐(C6H4)n‐ and ‐(C10H6C6H4)‐ exhibit an unusual dual emission (F1 and F2 bands) in weakly polar or nonpolar solvents. Time‐resolved fluorescence studies show a successive temporal evolution from the F1 to F2 emission, which can be rationalized by an ICT‐driven counterion migration. Upon optically induced ICT, the counterions move from ‐+PR3 to ‐NPh2 and back in the ground state, thus achieving an ion‐transfer cycle. Increasing the solvent polarity makes the solvent stabilization dominant, and virtually stops the ion migration. Providing that either D or A has ionic character (by static ion‐pair stabilization), the ICT‐induced counterion migration should not be uncommon in weakly polar to nonpolar media, thereby providing a facile avenue for mimicking a photoinduced molecular machine‐like motion.  相似文献   

14.
Anion…π interactions are newly recognized weak supramolecular forces which are relevant to many types of electron‐deficient aromatic substrates. Being less competitive with respect to conventional hydrogen bonding, anion…π interactions are only rarely considered as a crystal‐structure‐defining factor. Their significance dramatically increases for polyoxometalate (POM) species, which offer extended oxide surfaces for maintaining dense aromatic/inorganic stacks. The structures of tetrakis(caffeinium) μ12‐silicato‐tetracosa‐μ2‐oxido‐dodecaoxidododecatungsten trihydrate, (C8H11N4O2)4[SiW12O40]·3H2O, (1), and tris(theobrominium) μ12‐phosphato‐tetracosa‐μ2‐oxido‐dodecaoxidododecatungsten ethanol sesquisolvate, (C7H9N4O2)3[PW12O40]·1.5C2H5OH, (2), support the utility of anion…π interactions as a special kind of supramolecular synthon controlling the structures of ionic lattices. Both caffeinium [(HCaf)+ in (1)] and theobrominium cations [(HTbr)+ in (2)] reveal double stacking patterns at both axial sides of the aromatic frameworks, leading to the generation of anion…π…anion bridges. The latter provide the rare face‐to‐face linkage of the anions. In (1), every square face of the metal–oxide cuboctahedra accepts the interaction and the above bridges yield flat square nets, i.e. {(HCaf+)2[SiW12O40]4?}n. Two additional cations afford single stacks only and they terminate the connectivity. Salt (2) retains a two‐dimensional (2D) motif of square nets, with anion…π…anion bridges involving two of the three (HTbr)+ cations. The remaining cations complete a fivefold anion…π environment of [PW12O40]3?, acting as terminal groups. This single anion…π interaction is influenced by the specific pairing of (HTbr)+ cations by double amide‐to‐amide hydrogen bonding. Nevertheless, invariable 2D patterns in (1) and (2) suggest the dominant role of anion…π interactions as the structure‐governing factor, which is applicable to the construction of noncovalent linkages involving Keggin‐type oxometalates.  相似文献   

15.
We report herein the synthesis and full characterization of the donor‐free Lewis superacids Al(ORF)3 with ORF=OC(CF3)3 ( 1 ) and OC(C5F10)C6F5 ( 2 ), the stabilization of 1 as adducts with the very weak Lewis bases PhF, 1,2‐F2C6H4, and SO2, as well as the internal C? F activation pathway of 1 leading to Al2(F)(ORF)5 ( 4 ) and trimeric [FAl(ORF)2]3 ( 5 , ORF=OC(CF3)3). Insights have been gained from NMR studies, single‐crystal structure determinations, and DFT calculations. The usefulness of these Lewis acids for halide abstractions has been demonstrated by reactions with trityl chloride (NMR; crystal structures). The trityl salts allow the introduction of new, heteroleptic weakly coordinating [Cl‐Al(ORF)3]? anions, for example, by hydride or alkyl abstraction reactions.  相似文献   

16.
A Two series of oligothiophenes 2 (nT) (n=4,5), annelated with bicyclo[2.2.2]octene (BCO) units at both ends, and quaterthiophenes 3 a – c , annelated with various numbers of BCO units at different positions, were newly synthesized to investigate the driving forces of π‐dimerization and the structure–property relationships of the π‐dimers of oligothiophene radical cations. Their radical‐cation salts were prepared through chemical one‐electron oxidation by using nitrosonium hexafluoroantimonate. From variable‐temperature electron spin resonance and electronic absorption measurements, the π‐dimerization capability was found to vary among the members of the 2 (nT)+ . SbF6? series and 3 + . SbF6? series of compounds. To examine these results, density functional theory (DFT) calculations at the M06‐2X/6‐31G(d) level were conducted for the π‐dimers. This level of theory was found to successfully reproduce the previously reported X‐ray structure of ( 2 (3T))22+ having a bent π‐dimer structure with ciscis conformations. The absorption bands obtained by time‐dependent DFT calculations for the π‐dimers were in reasonable agreement with the experimental spectra. The attractive and repulsive forces for the π‐dimerization were divided into four factors: 1) SOMO–SOMO interactions, 2) van der Waals forces, 3) solvation, and 4) Coulomb repulsion, and the effects of each factor on the structural differences and chain‐length dependence are discussed in detail.  相似文献   

17.
Upon reaction of gaseous Me3SiF with the in situ prepared Lewis acid Al(ORF)3, the stable ion‐like silylium compound Me3Si‐F‐Al(ORF)3 1 forms. The Janus‐headed 1 is a readily available smart Lewis acid that differentiates between hard and soft nucleophiles, but also polymerizes isobutene effectively. Thus, in reactions of 1 with soft nucleophiles (Nu), such as phosphanes, the silylium side interacts in an orbital‐controlled manner, with formation of [Me3Si?Nu]+ and the weakly coordinating [F?Al(ORF)3] or [(FRO)3Al‐F‐Al(ORF)3] anions. If exchanged for hard nucleophiles, such as primary alcohols, the aluminum side reacts in a charge‐controlled manner, with release of FSiMe3 gas and formation of the adduct R(H)O?Al(ORF)3. Compound 1 very effectively initiates polymerization of 8 to 21 mL of liquid C4H8 in 50 mL of CH2Cl2 already at temperatures between ?57 and ?30 °C with initiator loads as low as 10 mg in a few seconds with 100 % yield but broad polydispersities.  相似文献   

18.
In the crystal structure of the title compound, C6H10N3+·C7H5O3, the asymmetric unit contains four crystallographically independent 2‐amino‐4,6‐dimethyl­pyrimidinium and salicylate ions (Z = 8). In each of these, one of the pyrimidine N atoms is protonated, and the carboxyl­ate group of the salicylate ion inter­acts with the pyrimidine group through a pair of N—H⋯O hydrogen bonds, forming an R22(8) motif. The pyrimidine cations also form base pairs via a pair of N—H⋯N hydrogen bonds (involving the amino group and the unprotonated ring N atom), forming another R22(8) motif. Three such R22(8) motifs, fused together, constitute a closed cyclic aggregate, and the linking of these aggregates, arranged in consecutive layers, can be analysed in terms of off‐face stacking inter­actions.  相似文献   

19.
Reaction of AgNO3 and 2,2′‐bipyridine (bipy) under ultrasonic treatment gave the title compound, [Ag(C10H8N2)(NH3)]NO3. The crystal structure consists of dimers formed by two symmetry‐related AgI–bipy monomers connected through intra‐dimer π–π stacking and ligand‐unsupported Ag...Ag interactions. A crystallographic C2 axis passes through the mid‐point of and is perpendicular to the Ag...Agi(−x + 1, y, −z + ) axis. In addition, each AgI cation is coordinated by one chelating bipy ligand and one ammine ligand, giving a trigonal coordination environment capped by the symmetry‐equivalent Ag atom. Molecules are assembled by Ag...Ag, π–π, hydrogen‐bond (N—H...O and C—H...O) and weak Ag...π interactions into a three‐dimensional framework. Comparing the products synthesized under different mechanical treatments, we found that reaction conditions have a significant influence on the resulting structures. The luminescence properties of the title compound are also discussed.  相似文献   

20.
Upon reacting SeCl4 with Me3Si–F–Al(ORF)3, the selenonium salt SeMeCl2[al‐f‐al] ( 1 ) {[al‐f‐al] = [F[Al(OC(CF3)3)3]2]} was obtained and characterized by NMR, IR, and Raman spectroscopy as well as single crystal XRD experiments. Despite the [SeX3]+ (X = F, Cl, Br, I) and [SeR3]+ salts (R = aliphatic organic residue) being well known and thoroughly studied, the mixed cations are scarce. The only previous example of a salt with the [SeMeCl2]+ cation is SeMeCl2[SbCl6], which was never structurally characterized and is unstable in solution over hours. Only 1H‐NMR studies and IR spectra of this compound are known. The unexpected use of Me3Si–F–Al(ORF)3 as a methylating agent was investigated via DFT calculations and NMR experiments of the reaction solution. The reaction of SeCl3[al‐f‐al] with Me3Si‐Cl at room temperature in CH2Cl2 proved to yield the same product with Me3Si–Cl acting as a methylating agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号