首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum‐dot‐sensitized solar cells (QDSCs) are a promising low‐cost alternative to existing photovoltaic technologies such as crystalline silicon and thin inorganic films. The absorption spectrum of quantum dots (QDs) can be tailored by controlling their size, and QDs can be produced by low‐cost methods. Nanostructures such as mesoporous films, nanorods, nanowires, nanotubes and nanosheets with high microscopic surface area, redox electrolytes and solid‐state hole conductors are borrowed from standard dye‐sensitized solar cells (DSCs) to fabricate electron conductor/QD monolayer/hole conductor junctions with high optical absorbance. Herein we focus on recent developments in the field of mono‐ and polydisperse QDSCs. Stability issues are adressed, coating methods are presented, performance is reviewed and special emphasis is given to the importance of energy‐level alignment to increase the light to electric power conversion efficiency.  相似文献   

2.
High‐efficiency bulk heterojunction (BHJ) organic solar cells with power conversion efficiencies of more than 5 % can be fabricated using the green solvent 2‐MeTHF. The active layers comprise a blend of a molecular semiconductor donor with intermediate dimensions (X2) and the soluble fullerene derivative [6,6]‐phenyl‐C61‐butyricacidoctylester (PC61BC8). A switch of the processing solvent from chloroform to 2‐MeTHF leads to no negative impacts on the morphology and charge‐transport properties of optimally performing BHJ films. Examinations by absorption spectroscopy, atomic force microscopy, and grazing incidence wide‐angle X‐ray scattering reveal no significant modification of morphology. These results show that green solvents can be excellent alternatives for large‐area printing of high‐performance organic photovoltaics (OPVs) and thus open new opportunities for sustainable mass production of organic solar cells and other optoelectronic devices.  相似文献   

3.
Herein, we demonstrate that the intramolecular electron transfer within a single enzyme molecule is an important alternative pathway that can be harnessed to generate electricity. By decoupling the redox reactions within a single type of enzyme (for example, Trametes versicolor laccase), we harvested electricity efficiently from unconventional fuels including recalcitrant pollutants (for example, bisphenol A and hydroquinone) in a single‐laccase biofuel cell. The intramolecular electron‐harnessing concept was further demonstrated with other enzymes, including power generation during CO2 bioconversion to formate catalyzed by formate dehydrogenase from Candida boidinii . The novel single‐enzyme biofuel cell is shown to have potential for utilizing wastewater as a fuel as well as for generating energy while driving bioconversion of chemical feedstock from CO2.  相似文献   

4.
This review focuses on our work on metal‐free sensitizers for dye‐sensitized solar cells (DSSCs). Sensitizers based on D?A′?π?A architecture (D is a donor, A is an acceptor, A′ is an electron‐deficient entity) exhibit better light harvesting than D?π?A‐type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron‐deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron‐excessive and ‐deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(–π–A)2, can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High‐performance, aqueous‐based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6‐tetramethylpiperidin‐N‐oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain.

  相似文献   


5.
Under certain conditions, repetitive DNA motifs have the potential to adopt non‐B‐form DNA structures, such as hairpins, triplexes, Z‐DNA, quadruplexes, and i‐motifs. Some non‐B‐form DNAs have been proposed to cause mutations and, consequently, participate in several biologically important processes, including regulation, evolution, and human disease. Advancement in the knowledge of specific interactions between molecules and non‐B‐form DNAs at the molecular level in living cells is important for understanding their biological functions. In this review, we describe the latest studies on molecules that target non‐B‐form DNAs in vivo, with a focus on Z‐DNA, G‐quadruplexes, triplexes, i‐motifs, and hairpins.  相似文献   

6.
Disulfide‐containing IgG‐, Fc‐, or albumin‐based prodrugs that rely on FcRn‐trafficking by endothelial cells for prolonged circulation in the body might be hampered by premature bio‐reduction processes during FcRn‐mediated recycling events. A detailed bio‐reduction analysis of redox‐sensitive albumin conjugates in two FcRn‐expressing cell lines has been performed. The obtained results indicate that the FcRn‐mediated recycling pathway is not (or is only poorly) bio‐reducing.  相似文献   

7.
New opp‐dibenzoporphyrins were prepared in a concise method that was based on a Pd0‐catalyzed cascade reaction. These porphyrins, which contained carboxylic‐acid linker groups on benzene rings that were fused to the porphyrin at their β,β′‐positions, were examined as sensitizers for dye‐sensitized solar cells for the first time. Whereas all of the porphyrins showed solar‐energy‐to‐electricity conversion, an opp‐dibenzoporphyrin with conjugated carboxylic‐acid linkers displayed the highest conversion efficiency and an exceptionally high Jsc value. Cyclic voltammetry of these porphyrins suggested that the fusion of two aromatic benzene rings onto the periphery of the porphyrin lowered the HOMO–LUMO energy gap; the incorporation of a conjugated carboxylic‐acid linker group decreased the HOMO–LUMO gap even further. These CV data are consistent with DFT calculations for these porphyrins and agree well with the UV/Vis absorption‐ and fluorescence spectra of these porphyrins.  相似文献   

8.
9.
Polymeric microcapsules have begun to attract significant interest in biomedical fields. As the interactions between cells and materials are influenced by both cell type and elasticity, silk‐based microcapsules are synthesized with desirable mechanical features using layer‐by‐layer assembly and then the uptake of these microcapsules by BeWo b30 placental cells is investigated. Cellular uptake is enhanced with increasing of elastic modulus of the silk‐based microcapsules. More importantly, the distinct microvilli of these cells behaves in a diverse manner when exposed to microcapsules with different mechanical features, including grabbing (rigidity) or random touching (soft) behavior; these factors affect the final uptake. Inspired by oocyte pickup, the grabbing behavior of the microvilli may provide valuable information with which to elucidate the specific characteristics of uptake between cells and man‐made particles, particularly in the reproductive system.  相似文献   

10.
A multimodal activity‐based probe for targeting acidic organelles was developed to measure subcellular native enzymatic activity in cells by fluorescence microscopy and mass spectrometry. A cathepsin‐reactive warhead conjugated to a weakly basic amine and a clickable alkyne, for subsequent appendage of a fluorophore or biotin reporter tag, accumulated in lysosomes as observed by structured illumination microscopy (SIM) in J774 mouse macrophage cells. Analysis of in vivo labeled J774 cells by mass spectrometry showed that the probe was very selective for cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation‐induced autophagy, a catabolic pathway involving lysosomes, showed a large increase in the number of tagged proteins and an increase in cathepsin activity. The organelle‐targeting of activity‐based probes holds great promise for the characterization of enzyme activities in the myriad diseases linked to specific subcellular locations, particularly the lysosome.  相似文献   

11.
Photon‐induced near‐field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon‐polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time‐, orientation‐, and polarization‐dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (epidermal growth factor receptor, EGFR) reduces the intensity of these fields in both preparations. We propose that in the absence of plasmon waves in biological samples, these evanescent fields reflect the changes in EGFR kinase domain polarization upon ligand binding.  相似文献   

12.
Colloidal quantum dots (CQDs) are attractive absorber materials for high‐efficiency photovoltaics because of their facile solution processing, bandgap tunability due to quantum confinement effect, and multi‐exciton generation. To date, all published performance records for PbS CQDs solar cells have been based on the conventional hot‐injection synthesis method. This method usually requires relatively strict conditions such as high temperature and the utility of expensive source material (pyrophoric bis(trimethylsilyl) sulfide (TMS‐S)), limiting the potential for large‐scale and low‐cost synthesis of PbS CQDs. Here we report a facile room‐temperature synthetic method to produce high‐quality PbS CQDs through inexpensive ionic source materials including Pb(NO3)2 and Na2S in the presence of triethanolamine (TEA) as the stabilizing ligand. The PbS CQDs were successfully prepared with an average particle size of about 5 nm. Solar cells based on the as‐synthesized PbS CQDs show a preliminary power conversion efficiency of 1.82%. This room‐temperature and low‐cost synthesis of PbS CQDs will further benefit the development of solution‐processed CQD solar cells.  相似文献   

13.
All‐polymer solar cells (all‐PSCs) can offer unique advantages for applications in flexible devices, and naphthalene diimide (NDI)‐based polymer acceptors are the widely used polymer acceptors. However, their power conversion efficiency (PCE) still lags behind that of state‐of‐the‐art polymer solar cells, due to low light absorption, suboptimal energy levels and the strong aggregation of the NDI‐based polymer acceptor. Herein, a rhodanine‐based dye molecule was introduced into the NDI‐based polymer acceptor by simple random copolymerization and showed an improved light absorption coefficient, an up‐shifted lowest unoccupied molecular orbital level and reduced crystallization. Consequently, additive‐free all‐PSCs demonstrated a high PCE of 8.13 %, which is one of the highest performance characteristics reported for all‐PSCs to date. These results indicate that incorporating a dye into the n‐type polymer gives insight into the precise design of high‐performance polymer acceptors for all‐PSCs.  相似文献   

14.
The synthesis, characterization, and photophysical and photovoltaic properties of two anthracene‐containing wide‐band‐gap donor and acceptor (D–A) alternating conjugated polymers ( P1 and P2 ) are described. These two polymers absorb in the range of 300–600 nm with a band gap of about 2.12 eV. Polymer solar cells with P1 :PC71BM as the active layer demonstrate a power conversion efficiency (PCE) of 2.23% with a high Voc of 0.96 V, a Jsc of 4.4 mA cm−2, and a comparable fill factor (FF) of 0.53 under simulated solar illumination of AM 1.5 G (100 mW cm−2). In addition, P2 :PC71BM blend‐based solar cells exhibit a PCE of 1.42% with a comparable Voc of 0.89 V, a Jsc of 3.0 mA cm−2, and an FF of 0.53.

  相似文献   


15.
16.
High‐molecular‐weight conjugated polymer HD‐PDFC‐DTBT with N‐(2‐hexyldecyl)‐3,6‐difluorocarbazole as the donor unit, 5,6‐bis(octyloxy)benzothiadiazole as the acceptor unit, and thiophene as the spacer is synthesized by Suzuki polycondensation. HD‐PDFC‐DTBT shows a large bandgap of 1.96 eV and a high hole mobility of 0.16 cm2 V−1 s−1. HD‐PDFC‐DTBT:PC71BM‐based inverted polymer solar cells (PSCs) give a power conversion efficiency (PCE) of 7.39% with a Voc of 0.93 V, a Jsc of 14.11 mA cm−2, and an FF of 0.56.

  相似文献   


17.
Organic dyes with ethoxy‐substituted oligo‐phenylenevinylene as chromophores were synthesized for dye‐sensitized solar cells (DSSCs), and the detailed relationships between the dye structures, photophysical properties, electrochemical properties, and performances of DSSCs were described. The dye S3O showed broad IPCE spectra in the spectral range of 350–750 nm, and the dye S1P showed solar energy‐to‐electricity conversion efficiency (() of up to 4.23% under AM 1.5 irradiation (100 mW/cm2) in comparison with the reference Ru‐complex (N719 dye) with an η value of 5.90% under similar experimental conditions.  相似文献   

18.
A series of donor–π–acceptor‐type organic dyes based on 1‐alkyl‐1H‐imidazole spacers 1 , 2 , 3 , 4 , 5 have been developed and characterized. The two electron donors are at positions 4 and 5 of the imidazole, while the electron‐accepting cyanoacrylic acid is incorporated at position 2 by a spacer‐containing heteroaromatic rings, such as thiophene and thiazole. Detailed investigation on the relationship between the structure, spectral and electrochemical properties, and performance of DSSC is described here. Dye‐sensitized solar cells (DSSCs) using dyes as the sensitizers exhibit good efficiencies, ranging from 3.06 to 6.35 %, which reached 42–87 % with respect to that of N719‐based device (7.33 %) fabricated and measured under similar conditions. Time‐dependent density functional theory (TDDFT) calculations have been performed on the dyes, and the results show that both electron donors can contribute to electron injection upon photo‐excitation, either directly or indirectly by internal conversion to the lowest excited state.  相似文献   

19.
A series of small molecules that contained identical π‐spacers (ethyne), a central diketopyrrolopyrrole (DPP) unit, and different aromatic electron‐donating end‐groups were synthesized and used in organic solar cells (OSCs) to study the effect of electron‐donating groups on the device performance. The three compounds, DPP‐A‐Ph , DPP‐A‐Na , and DPP‐A‐An , possessed intense absorption bands that covered a wide range, from 350 to 750 nm, and relatively low HOMO energy levels, from ?5.50 to ?5.55 eV. DPP‐A‐An , which contained anthracene end‐groups, demonstrated a stronger absorbance and a higher hole mobility than DPP‐A‐Ph , which contained phenyl groups, and DPP‐A‐Na , which contained naphthalene units. The power‐conversion efficiencies (PCEs) of OSCs based on organic:PC71BM blends (1:1, w/w) with a processed DIO additive were 3.93 % for DPP‐A‐An , 3.02 % for DPP‐Na , and 2.26 % for DPP‐A‐Ph . These findings suggest that a DPP core that is functionalized with electron‐donating capping groups constitutes a promising new class of solution‐processable small molecules for OSC applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号