首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge‐shift bonds (CSBs) constitute a new class of bonds different than covalent/polar‐covalent and ionic bonds. Bonding in CSBs does not arise from either the covalent or the ionic structures of the bond, but rather from the resonance interaction between the structures. This Essay describes the reasons why the CSB family was overlooked by valence‐bond pioneers and then demonstrates that the unique status of CSBs is not theory‐dependent. Thus, valence bond (VB), molecular orbital (MO), and energy decomposition analysis (EDA), as well as a variety of electron density theories all show the distinction of CSBs vis‐à‐vis covalent and ionic bonds. Furthermore, the covalent–ionic resonance energy can be quantified from experiment, and hence has the same essential status as resonance energies of organic molecules, e.g., benzene. The Essay ends by arguing that CSBs are a distinct family of bonding, with a potential to bring about a Renaissance in the mental map of the chemical bond, and to contribute to productive chemical diversity.  相似文献   

2.
The entire range of compounds related to, as weil as including those containing, quadruple bonds between metal atoms is reviewed, briefly and historically, and some prospects for future work are considered.  相似文献   

3.
Halogen‐ and chalcogen‐based σ‐hole interactions have recently received increased interest in non‐covalent organocatalysis. However, the closely related pnictogen bonds have been neglected. In this study, we introduce conceptually simple, neutral, and monodentate pnictogen‐bonding catalysts. Solution and in silico binding studies, together with high catalytic activity in chloride abstraction reactions, yield compelling evidence for operational pnictogen bonds. The depth of the σ holes is easily varied with different substituents. Comparison with homologous halogen‐ and chalcogen‐bonding catalysts shows an increase in activity from main group VII to V and from row 3 to 5 in the periodic table. Pnictogen bonds from antimony thus emerged as by far the best among the elements covered, a finding that provides most intriguing perspectives for future applications in catalysis and beyond.  相似文献   

4.
High-level G4 calculations show that the strength of chalcogen interactions is enhanced dramatically if chalcogen compounds simultaneously form alkaline-earth bonds. This phenomenon is studied by exploring binary YX2⋅⋅⋅N-Base complexes and two types of ternary MCl2⋅⋅⋅YX2⋅⋅⋅N-Base, YX2⋅⋅⋅N-Base⋅⋅⋅MCl2 complexes, in which YX2 is a chalcogen compound (Y=S, Se; X=F, Cl), the N-Bases are sp, sp2, and sp3 bases (NCH, HN=CH2, NH3), and MCl2 are alkaline-earth BeCl2 or MgCl2 derivatives. Starting from the chalcogen-bonded complexes YX2⋅⋅⋅NH3 and YX2⋅⋅⋅HN=CH2, the binding site of a new incoming alkaline-earth bond is found, surprisingly, to depend on the nature of the halogen atom attached to the chalcogen. For the YF2 binary complexes the association site is the F atom of the YF2 subunit, whereas for YCl2 it is the N atom of the nitrogen base. Regarding YX2⋅⋅⋅NCH complexes, N is the most favorable site for an alkaline-earth interaction in ternary complexes, regardless of which YX2 derivative is used. The explanation relies on the interplay of all the noncovalent interactions involved: the strong cooperativity between chalcogen and alkaline-earth bonds, and the appearance of secondary noncovalent interactions in the form of hydrogen bonds.  相似文献   

5.
6.
Lithium bonds are analogous to hydrogen bonds and are therefore expected to exhibit similar characteristics and functions. Additionally, the metallic nature and large atomic radius of Li bestow the Li bond with special features. As one of the most important applications of the element, Li batteries afford emerging opportunities for the exploration of Li bond chemistry. Herein, the historical development and concept of the Li bond are reviewed, in addition to the application of Li bonds in Li batteries. In this way, a comprehensive understanding of the Li bond in Li batteries and an outlook on its future developments is presented.  相似文献   

7.
《Comptes Rendus Chimie》2016,19(8):995-1002
In this paper, a theoretical study of the molecular properties of NaH⋯2(HF) and NaH⋯4(HF) complexes is reported. Based on MP2/6-311++G(d,p) calculations, the dihydrogen bonds (H⋯H), hydrogen bonds (F⋯H) and halogen-hydride bonds (F⋯Na) of these intermolecular systems were fully characterized. The characterization involved the following procedures: the examination of structural parameters, analysis of vibration modes such as frequencies shifted to red or blue in the infrared spectrum, modeling of the electronic topology, quantification of the cooperative energy followed by charge transfer and, finally, natural bond orbital analysis. The results show short intermolecular distances with high electronic density, while the stretch frequencies of the proton donors and acceptors are unusually shifted, and some values reach 1000 cm−1. When all subunits of the complexes are taken into account, in this case the NaH and HF molecules, the high value for the strength of the H⋯H dihydrogen bond in NaH⋯2(HF) suggests the formation of an additional subpart, i.e., the H2 molecule.  相似文献   

8.
Reaction of a imidazole phenol ligand 4‐(imidazlo‐1‐yl)phenol (L) with 3d metal salts afforded four complexes, namely, [Ni(L)6] · (NO3)2 ( 1 ), [Cu(L)4(H2O)] · (NO3)2 · (H2O)5 ( 2 ), [Zn(L)4(H2O)] · (NO3)2 · (H2O) ( 3 ), and [Ag2(L)4] · SO4 ( 4 ). All complexes are composed of monomeric units with diverse coordination arrangements and corresponding anions. All the hydroxyl groups of monomeric cations are used as hydrogen‐bond donors to form O–H ··· O hydrogen bonds. However, the coordination habit of different metal ions produces various supramolecular structures. The NiII atom shows octahedral arrangement in 1 , featuring a 3D twofold inclined interpenetrated network through O–H ··· O hydrogen bond and π–π stacking interaction. The CuII atom of 2 displays square pyramidal environment. The O–H ··· O hydrogen bond from the [Cu(L)4(H2O)]2+ cation and lattice water molecule as well as π–π stacking produce one‐dimensional open channels. NO3 ions and lattice water molecules are located in the channels. 3 is a 3D supramolecular network, in which ZnII has a trigonal bipyramid arrangement. Two different rings intertwined with each other are observed. The AgI in 4 has linear and triangular coordination arrangements. The mononuclear units are assembled into a 1D chain by hydrogen bonding interaction from coordination units and SO42– anions.  相似文献   

9.
Strategies for co-crystal synthesis tend to employ either hydrogen- or halogen-bonds between different molecules. However, when both interactions are present, the structural influence that they may exert on the resulting assembly is difficult to predict a priori. To shed some light on this supramolecular challenge, we attempted to co-crystallize ten aliphatic dicarboxylic acids (co-formers) with three groups of target molecules; N-(pyridin-2-yl)picolinamides (2Pyr-X), N-(pyridin-2-yl)nicotinamides (3Pyr-X), N-(pyridin-2-yl)isonicotinamides (4Pyr-X); X=Cl/ Br/ I. The structural outcomes were compared with co-crystals prepared from the non-halogenated targets. As expected, none of the reactions with 2Pyr-X produced co-crystals due to the presence of a very stable intramolecular N-H···N hydrogen bond. In the 3Pyr series, all six structures obtained showed the same synthons, –COOH···N(py) and –COOH···N(py)-NH, that were found in the non-halogenated parent 3Pyr and were additionally accompanied by structure directing X···O(OH) interactions (X=Br/I). The co-crystals of the unhalogenated parent 4Pyr co-crystals assembled via intermolecular –COOH···N(py) and –COOH···N(py)-NH synthons. Three of the analogues 4Pyr-X co-crystals displayed only COOH···N(py) and –COOH···N(py)-NH interactions. The three co-crystals of 4Pyr-X with fumaric acid (for which no analogues structures with 4Pyr are known) formed –COOH···N(py)-NH and –NH···O=C hydrogen bonds and showed no structure-directing halogen bonds. In three co-crystals of 4Pyr-I in which –COOH···N(py)-NH hydrogen bond was present, a halogen-bond based –I···N(py) synthon replaced the –COOH···N(py) motif observed in the parent structures. The structural influence of the halogen atoms increased in the order of Cl < Br < I, as the size of σ-holes increased. Finally, it is noteworthy that isostructurality among structures of the homomeric targets was not translated to structural similarities between their respective co-crystals.  相似文献   

10.
MP2 and DFT calculations with correlation consistent basis sets indicate that isolated linear anionic dialkylgold(I) complexes form moderately strong (ca. 10 kcal mol?1) Au???H hydrogen bonds with single H2O molecules as donors in the absence of sterically demanding substituents. Relativistic effects are critically important in the attraction. Such bonds are significantly weaker in neutral, strong σ‐donor N‐heterocyclic carbene (NHC) complexes (ca. 5 kcal mol?1). The overall association (>11 kcal mol?1), however, is strengthened by co‐operative, synergistic classical hydrogen bonding when the NHC ligands bear NH units. Further manipulation of the interaction by ligands positioned trans to the carbene, is possible.  相似文献   

11.
While the halogen bond has been recognised and studied for over a hundred years, it is only in more recent times that chemists have begun to apply it and see its possibilities as another supramolecular interaction that can be deployed in the preparation of materials. This review takes one of those areas, liquid crystals, and considers examples of motifs that have been deployed successfully to generate new mesogens. In particular, rather than attempting to be comprehensive, the article reviews critically data from well-characterised systems and seeks to first make some comparisons with analogous hydrogen-bonded materials, before considering how the lability and flexibility of the halogen bond expresses itself in liquid crystal behaviour.  相似文献   

12.
超高真空(ultra-high vacuum,UHV)环境下的表面化学反应是构筑二维(two-dimensional,2D)功能纳米材料的重要方法,近年来,已经引起越来越多研究者的关注.本综述介绍了近几年来有机分子表面化学反应的几种主要类型,如有机金属配位反应、脱卤反应、脱氢环化、缩聚反应、炔烃偶合等,以及利用超高真空扫描隧道显微镜(STM)等测试手段对反应过程以及所形成的精细结构进行分析,特别是反应后结构中分子的连接方式,如有机金属配位键,C-C键,以及氢键等.  相似文献   

13.
14.
Complexes containing odd-electron Be−Be bonds are still rare until now. Hereby, a series of neutral di-beryllium amidinate complexes containing a Be−Be bond were explored theoretically. The complexes with direct chelation with the Be2 dimer by the bidentate amidinate (AMD) ligands are always corresponding to their global minimum structures. The detailed bonding analyses reveal that the localized electrons of the Be−Be fragment can be adjusted by the amount of AMD ligands because each AMD ligand only takes one electron from the Be2 fragment. Meanwhile, the hybridization of the central Be atom also changes as the number of AMD ligands increases. In particular, the sp3-hybridized single-electron Be−Be bond is firstly identified in the tri-AMD-ligands-chelated neutral D3h- Be2(AMD)3 complex, which also possesses the higher stability compared to its monoanionic D3h- Be2(AMD)3 and monocationic C3- Be2(AMD)3 + analogues. Importantly, our study provides a new approach to obtain a neutral odd-electron Be−Be bond, namely by the use of radical ligands through side-on chelation.  相似文献   

15.
Carbonate MCO3 (M = Zn, Cd) can act as both Lewis acid and base to engage in a spodium bond with nitrogen-containing bases (HCN, NHCH2, and NH3) and a chalcogen bond with SeHX (X = F, Cl, OH, OCH3, NH2, and NHCH3), respectively. There is also a weak hydrogen bond in the chalcogen-bonded dyads. Both chalcogen and hydrogen bonds become stronger in the order of F > Cl > OH > OCH3 > NH2 > NHCH3. The chalcogen-bonded dyads are stabilized by a combination of electrostatic and charge transfer interactions. The interaction energy of chalcogen-bonded dyad is less than −10 kcal/mol at most cases. Furthermore, the chalcogen bond can be strengthened through coexistence with a spodium bond in N-base-MCO3-SeHX. The enhancement of chalcogen bond is primarily attributed to the charge transfer interaction. Additionally, the spodium bond is also enhanced by the chalcogen bond although the corresponding enhancing effect is small.  相似文献   

16.
The lithium‐ and hydrogen‐bonded complex of HLi? NCH? NCH is studied with ab initio calculations. The optimized structure, vibrational frequencies, and binding energy are calculated at the MP2 level with 6‐311++G(2d,2p) basis set. The interplay between lithium bonding and hydrogen bonding in the complex is investigated with these properties. The effect of lithium bonding on the properties of hydrogen bonding is larger than that of hydrogen bonding on the properties of lithium bonding. In the trimer, the binding energies are increased by about 19 % and 61 % for the lithium and hydrogen bonds, respectively. A big cooperative energy (?5.50 kcal mol?1) is observed in the complex. Both the charge transfer and induction effect due to the electrostatic interaction are responsible for the cooperativity in the trimer. The effect of HCN chain length on the lithium bonding has been considered. The natural bond orbital and atoms in molecules analyses indicate that the electrostatic force plays a main role in the lithium bonding. A many‐body interaction analysis has also been performed for HLi? (NCH)N (N=2–5) systems.  相似文献   

17.
Bis(trimethylammonium) alkane diiodides dynamically encapsulate dicarboxylic acids through intermolecular hydrogen bonds between the I? anions of the hosts and the carboxylic OH groups of the guests. A selective recognition is realized when the size of the I????HOOC(CH2/CF2)nCOOH???I? superanion matches the dication alkyl chain length. Dynamic recognition is also demonstrated in solution, where the presence of the size‐matching organic salt boosts the acid solubility profile, thus allowing efficient mixture separation.  相似文献   

18.
Two kinds of polyurethane elastomers were synthesized. One containing acylhydrazone bonds was named TPIA. The other containing both acylhydrazone and disulfide bonds was named TPID. Self-repairable ability and reprocessability of these two elastomers were studied. The results show that: The polyurethane elastomer TPIA can automatically repair damage to it under acidic conditions. After self-healing for 24 h, the strength and the elongation value at break recovered to 32% and 55% of the originality, respectively. The polyurethane elastomer TPID can automatically repair damage to it under visible light at room temperature. After 24 h of self-healing time, 75% of the original strength and 100% of the original elongation values at break were obtained. These two polyurethane elastomers can be reprocessed in their cured state by just applying temperature and pressure.  相似文献   

19.
The retention indices of methyl and trimethylsilyl esters of octadeca-, eicosa- and tricosa-ynoic fatty acids containing acetylenic bonds were measured on non-polar stationary phase (dimethylsilicone with 5% phenyl groups). An unusually large increase in retention is observed for compounds containing conjugated and methylene interrupted acetylenic bonds. The additional increase in retention index as a result of the presence of one conjugated acetylenic bond is roughly equivalent to the retention increase caused by lengthening of the hydrocarbon chain for one carbon atom. The increase in retention for methylene interrupted bonds constitutes approximately 50% increase for conjugated triple bonds. A further increase in interruption substantially decreases the effect. Based on available literature data and the results of this work, the contributions of conjugated acetylenic and olefinic bonds, and methylene interrupted acetylenic bonds to retention were estimated.  相似文献   

20.
In moderately strong hydrogen bonds, hydrogen bond formation increases the anharmonicity constant of the high frequency stretching vibration, significantly but not dramatically. This increase tends to increase with the strength of the hydrogen bond. The main cause of the fine structure and breadth of this band is, however, coupling with both the low frequency stretching and bending vibrations of the bridge, despite the smallness of the coupling constants. Second–order perturbation theory is sufficient to interpret the observed frequencies in the case of moderately strong hydrogen bonds. HCNHF, O–H:O, O–H:N, and N–H:N hydrogen bonds are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号