首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC–MS/MS) method was developed and validated to concurrently determine rhynchophylline and hirsutine in rat plasma. The sample preparation of rat plasma was achieved by alkalization and liquid–liquid extraction. The mass transition of precursor ion → product ion pairs were monitored at m/z 385.2 → 160.0 for rhynchophylline, m/z 369.3 → 144.0 for hirsutine and m/z 414.0 → 220.0 for noscapine (internal standard). This method revealed linear relationships from 2.5 to 50 ng/mL (r2 > 0.997) for rhynchophylline and from 2.5 to 50 ng/mL (r2 > 0.998) for hirsutine. The limit of quantification values for rhynchophylline and hirsutine in rat plasma were both 2.5 ng/mL. Intra‐day and inter‐day precisions were within 10.6% and 12.5%, respectively, for rhynchophylline and hirsutine, and the accuracy (bias) was <10%. Liquid–liquid extraction of rat plasma samples resulted in insignificant matrix effect, and the extraction recoveries were >83.6% for rhynchophylline, 73.4% for hirsutine and 90.7% for the internal standard. This method was applied successfully to a pharmacokinetic study of rhynchophylline and hirsutine in rats after oral administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Compound 27 {1, 12‐bis[4‐(4‐amino‐6,7‐dimethoxyquinazolin‐2‐yl)piperazin‐1‐yl]dodecane‐1,12‐dione} is a novel small molecule agonist of EphA2 receptor tyrosine kinase. It showed much improved activity for the activation of EphA2 receptor compared with the parental compound doxazosin. To support further pharmacological and toxicological studies of the compound, a method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC–MS/MS) has been developed for the quantification of this compound. Liquid–liquid extraction was used to extract the compound from mouse plasma and brain tissue homogenate. Reverse‐phase chromatography with gradient elution was performed to separate compound 27 from the endogenous molecules in the matrix, followed by MS detection using positive ion multiple reaction monitoring mode. Multiple reaction monitoring transitions m/z 387.3 → 290.1 and m/z 384.1 → 247.1 were selected for monitoring compound 27 and internal standard prazosin, respectively. The linear calibration range was 2–200 ng/mL with the intra‐ and inter‐day precision and accuracy within the acceptable range. This method was successfully applied to the quantitative analysis of compound 27 in mouse plasma and brain tissue with different drug administration routes.  相似文献   

3.
In this study, a sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the quantification of demethylzeylasteral in rat plasma. Electrospray ionization was operated in the negative ion mode while demethylzeylasteral and oleanolic acid (internal standard) were measured by selected reaction monitoring (demethylzeylasteral: m/z 479.2 → 436.0; oleanolic acid: m/z 454.9 → 407.2). This LC–MS/MS method had good selectivity, sensitivity, accuracy and precision. The pharmacokinetic profiles of demethylzeylasteral were subsequently examined in Wistar rats after oral or intravenous administration.  相似文献   

4.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the simultaneous determination of metacavir and its two metabolites in rat plasma was developed and validated. Tinidazole was used as an internal standard and plasma samples were pretreated with one‐step liquid–liquid extraction. In addition, these analytes were separated using an isocratic mobile phase on a reverse‐phase C18 column and analyzed by MS in the selected reaction monitoring mode. The monitored precursor to product‐ion transitions for metacavir, 2′,3′‐dideoxyguanosine, O‐methylguanine and the internal standard were m/z 266.0 → 166.0, m/z 252.0 → 152.0, m/z 166.0 → 149.0 and m/z 248.0 → 202.0, respectively. The standard curves were found to be linear in the range of 1–1000 ng/mL for metacavir, 5–5000 ng/mL for 2′,3′‐dideoxyguanosine and 1–1000 ng/mL for O‐methylguanine in rat plasma. The precision and accuracy for both within‐ and between‐batch determination of all analytes ranged from 2.83 to 9.19% and from 95.86 to 111.27%, respectively. No significant matrix effect was observed. This developed method was successfully applied to an in vivo pharmacokinetic study after a single intravenous dose of 20 mg/kg metacavir in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, sensitive and rapid assay method has been developed and validated as per regulatory guidelines for the estimation of enasidenib on mouse dried blood spots (DBS) using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive‐ion mode. The method employs liquid extraction of enasidenib from DBS disks of mouse whole blood followed by chromatographic separation using 0.2% formic acid–acetonitrile (25:75, v/v) at a flow rate of 1.0 mL/min on an Atlantis dC18 column with a total run time of 2.0 min. The MS/MS ion transitions monitored were m/z 474.0 → 267.1 for enasidenib and m/z 309.2 → 251.3 for the internal standard (warfarin). The assay was linear in the range of 1.01 – 3044 ng/mL. The within‐run and between‐run precisions were in the range of 3.18 – 9.06 and 4.66 – 8.69%, respectively. Stability studies showed that enasidenib was stable on DBS cards for 1 month. This novel method has been applied to analyze the DBS samples of enasidenib obtained from a pharmacokinetic study in mice.  相似文献   

6.
A rapid and sensitive LC‐MS/MS method was developed for the determination of linarin in small‐volume rat plasma and tissue sample. Sample preparation was employed by the combination of protein precipitation (PPT) and liquid–liquid extraction (LLE) to allow measurement over a 5‐order‐of‐magnitude concentration range. Fast chromatographic separation was achieved on a Hypersil Gold column (100 × 2.1 mm i.d., 5 µm). Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray ionization interface operating in positive ionization mode. Quantification was performed using selected reaction monitoring of precursor‐product ion transitions at m/z 593 → 285 for linarin and m/z 447 → 271 for baicalin (internal standard). The total run time was only 2.8 min per sample. The calibration curves were linear over the concentration range of 0.4–200 µg/mL for PPT and 0.001–1.0 µg/mL for LLE. A lower limit of quantification of 1.0 ng/mL was achieved using only 20 μL of plasma or tissue homogenate. The intra‐ and inter‐day precisions in all samples were ≤14.7%, while the accuracy was within ±5.2% of nominal values. The validated method has been successfully applied to pharmacokinetic and tissue distribution study of linarin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Major depressive disorder is a severe, life‐threatening and highly prevalent psychiatric disorder. A high percentage of people suffering from depression are characterized by hyperactivity of the hypothalamic–pituitary–adrenal axis, resulting in plasma glucocorticoid (cortisol in human and corticosterone in rodent) elevations. Glucocorticoid is a critical molecule in the onset of pathology of depression. A simple, highly sensitive and specific method based on ultra‐fast liquid chromatography–tandem mass spectrometry method has been developed for the quantitation of corticosterone in mouse plasma for the first time, which provides technical support for the high‐throughput measurement for clinical determination of corticosterone in biological samples. Samples were spiked with methanol to precipitate the protein, and then chromatographed on an Agilent Zorbax Eclipse Plus C18 (100 × 2.1 mm,1.8 µm) column by linear gradient elution with methanol and 0.1% formic acid as the mobile phase within 5 min. The detection of corticosterone was performed on ultra‐fast liquid chromatography–triple quadrupole tandem mass spectrometry in the positive ion. The ions [M + H]+ m/z 347.2 → m/z 311.1 for corticosterone and [M + H]+ m/z 363.2 → m/z 327.2 for hydrocortisone (internal standard) were used for quantitative determination. The lower quantification limit for corticosterone was 1 ng/mL. The validated method was successfully applied to the quantitation of corticosterone in mouse plasma. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A highly sensitive, rapid assay method has been developed and validated for the estimation of bicalutamide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves extraction of bicalutamide and tolbutamide (internal standard, IS) from mouse plasma with a simple protein precipitation method. Chromatographic separation was achieved using an isocratic mobile phase (0.2% formic acid:acetonitrile, 35:65, v/v) at a flow rate of 0.5 mL/min on an Atlantis dC18 column (maintained at 40 ± 1°C) with a total run time of 3.0 min. The MS/MS ion transitions monitored were m/z 428.9 → 254.7 for bicalutamide and m/z 269.0 → 169.6 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 1.04 ng/mL and the linearity range extended from 1.04 to 1877 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 0.49–4.68 and 2.62–4.15, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive high‐performance liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of genipin in rat plasma after hydrolysis with sulfatase. Genipin could not be detected directly as it could be transformed into other forms such as conjugated‐genipin immediately after administration. The conjugated genipin could be hydrolyzed by sulfatase to genipin. The conditions of hydrolysis were investigated. Genipin and the internal standard, peoniflorin (IS), were separated on a reversed‐phase column by gradient elution and detected using an electrospray ion source on a 4000 QTrap triple‐quadrupole mass spectrometer. The quantification was performed using multiple reaction monitoring with selected precursor‐product ion pairs of the transitions m/z 225.0 → 122.7 and m/z 479.1 → 449.1 for genipin and peoniflorin. The assay was linear over the concentration range of 1.368–1368 ng/mL, with correlation coefficients of 0.9989. Intra‐ and inter‐day precisions and accuracy were all within 15%. The lower limit of quantification was 1.368 ng/mL. The recoveries of genipin and peoniflorin were more than 53.3 and 51.2%. The highly sensitive method was successfully applied to estimated pharmacokinetic parameters of genipin following oral and intravenous administration to rats. The absolute bioavailability of genipin was 80.2% in rat, which is the first report. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid, selective and sensitive liquid chromatography–tandem mass spectrometry assay method was developed for simultaneous determination of ambroxol and salbutamol in human plasma using citalopram hydrobromide as internal standard (IS). The sample was alkalinized with ammonia water (33:67, v/v) and extracted by single liquid–liquid extraction with ethyl acetate. Separation was achieved on Waters Acquity UPLC BEH C18 column using a gradient program at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the ion transitions m/z 378.9 → 263.6 (ambroxol), m/z 240.2 → 147.7 (salbutamol) and m/z 325.0 → 261.7 (IS). The total analytical run time was relatively short (3 min). Calibration curves were linear in the concentration range of 0.5–100.0 ng/mL for ambroxol and 0.2–20.0 ng/mL for salbutamol, with intra‐ and inter‐run precision (relative standard deviation) <15% and accuracy (relative error) ranging from 97.7 to 112.1% for ambroxol and from 94.5 to 104.1% for salbutamol. The method was successfully applied in a clinical pharmacokinetic study of the compound ambroxol and salbutamol tablets.  相似文献   

11.
Isoginkgetin is a biflavonoid compound isolated from the leaf extracts of Ginkgo biloba. In this study, an liquid chromatography–tandem mass spectrometry (LC/MS/MS) with liquid–liquid extraction was developed and validated for the analysis of isoginkgetin in rat plasma. In the process of chromatographic separation, selected reaction monitoring transitions for isoginkgetin and IS were m/z 566.8 → 134.7 and m/z 430.8 → 269.3, respectively. The validation parameters including selectivity, linearity, LLOQ, accuracy, precision, matrix effect, stability and recovery were satisfactory. The intra‐ and inter‐batch precision (RSD) were <12.1% in plasma, while the accuracy (RE) was within ±14.3%. This method was employed in a pharmacokinetic study on rats after the intravenous administration of isoginkgetin.  相似文献   

12.
A rapid and highly selective liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of polygalasaponin F (PF) in rat plasma was developed and validated. The chromatographic separation was achieved on a reverse‐phase Zorbax SB‐C18 column (150 × 4.6 mm, 5 µm), using 2 mm ammonium acetate (pH adjusted to 6.0 with acetic acid) and acetonitrile (25:75, v/v) as a mobile phase at 30 °C. MS/MS detection was performed using an electrospray ionization operating in positive ion multiple reaction monitoring mode by monitoring the ion transitions from m/z 1091.5 → 471.2 (PF) and m/z 700.4 → 235.4 (internal standard), respectively. The calibration curve showed a good linearity in the concentration range 0.0544–13.6 µg/mL, with a limit of quantification of 0.0544 µg/mL. The intra‐ and inter‐day precisions were <9.7% in rat plasma. The method was validated as per US Food and Drug Administration guidelines and successfully applied to pharmacokinetic study of PF in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Taraxasterol, a pentacyclic triterpene from Taraxacum officinale, is one of the main active constituents of the herb. This study developed and validated a highly selective and sensitive liquid chromatography/tandem mass spectrometry for the determination of taraxasterol in rat plasma over the range of 9.0–5000 ng/mL. Chromatographic separation was achieved on a C18 (4.6 × 50 mm, 5.0 µm) column with methanol–isopropanol–water–formic acid (80:10:10:0.1, v/v/v/v) as mobile phase with an isocratic elution. The flow rate was 0.7 mL/min. After adding cucurbitacin IIa as an internal standard (IS), liquid–liquid extraction was used for sample preparation using ethyl acetate. The atmospheric pressure chemical ionization source was applied and operated in positive ion mode. Selected reaction monitoring mode was used for the quantification of transition ions m/z 409.4 → 137.1 for taraxasterol and m/z 503.4 → 113.1 for IS. The mean recoveries of taraxasterol in rat plasma ranged from 85.3 to 87.2%. The matrix effects for taraxasterol were between 98.5 and 104.0%. Intra‐ and inter‐day precision were both <11.8%, and the accuracy of the method ranged from ?7.0 to 12.9%. The method was successfully applied to a pharmacokinetic study of taraxasterol after oral administration of 7.75, 15.5 and 31.0 mg/kg in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A sensitive and reproducible liquid chromatography tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of linarin, naringenin and formononetin in rat plasma after addition of sulfamethoxazole as the internal standard (IS). Separation was carried out on a Diamonsil C18 column (150 × 4.6 mm, 5 µm) with liner gradient elution using methanol (A) and 0.5‰ formic acid aqueous solution (B). Detection was performed on a triple‐quadrupole linear ion trap mass spectrometer with the negative ion electrospray ionization in multiple‐reaction monitoring (MRM) mode. The MRM transitions were m/z 591.2 → 283.2, 271.0 → 150.9, 266.9 → 252.0 and 252.0 → 155.9 for linarin, naringenin, formononetin and IS, respectively. All analytes showed good linearity within the concentration range (r > 0.9973). The lower limits of quantitation of linarin, naringenin and formononetin were 0.64, 1.07 and 1.04 ng/mL, respectively. Intra‐day and inter‐day precisions of the investigated components exhibited an RSD within 9.96%, and the accuracy (relative error) ranged from ?11.25 to 9.38% at all quality control levels. The developed method was successfully applied to a pharmacokinetic study of linarin, naringenin and formononetin in rats after oral administration of Bushen Guchi Pill. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

17.
In this work, a selective and sensitive ultra‐performance liquid chromatography tandem mass spectrometry method was established and validated for determination of corypalmine in mouse blood after oral or intravenous administration. A UPLC BEH C18 column was used to separate corypalmine and berberrubine (internal standard) at 40°C. The mobile phase was composed of acetonitrile and 10 mmol/L ammonium acetate (containing 0.1% formic acid) at a flow rate of 0.4 mL/min, and the total run time was 4.0 min. Electrospray ionization in positive ion mode was applied; target fragment ions m/z 342.2 → 178.0 for corypalmine and m/z 322.1 → 307.0 for berberrubine were identified with multiple reaction monitoring mode. The linear range was 1–1000 ng/mL (r > 0.995) and the lower limit of quantification for corypalmine in plasma was 1.0 ng/mL. The intra‐ and inter‐day precisions were both <14%. The range of accuracy in this method was 97.5–109.0%. Mean recovery was >69.6%, and the matrix effect was 96.8–107.6%. Based on its high sensitivity, specificity and reliability, this method was successfully applied to study the pharmacokinetic parameters of corypalmine in mouse by oral and intravenous administration, and finally, the bioavailability of corypalmine was identified at 4.6%.  相似文献   

18.
A sensitive, selective and robust liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the quantification of miglitol in rat plasma. The sample preparation procedures involved protein precipitation and unique solid‐phase extraction, which efficiently removed sources of ion suppression and column degradation interference present in the plasma. Chromatographic separation was achieved on an amide column using 10 mmol/L CH3COONH4 and CH3CN:CH3OH (90:10, v/v) as the mobile phase under gradient conditions. Detection was performed using tandem mass spectrometry equipped with an electrospray ionization interface in positive ion mode.The selected reaction monitoring transitions for miglitol and a stable isotope‐labeled internal standard were m/z 208 → m/z 146 and m/z 212 → m/z 176, respectively. The correlation coefficients of the calibration curves ranged from 0.9984 to 0.9993 over a concentration range of 0.5–100 ng/mL plasma. The quantification limit of the proposed method was more than 10 times lower than those of previously reported LC‐MS/MS methods. The novel method was successfully validated and applied to a pharmacokinetic study in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Filgotinib is a selective JAK1 (Janus kinase) inhibitor, filed in Japan for the treatment of rheumatoid arthritis. In this paper, we report a validated liquid chromatography coupled with tandem mass spectrometry for the quantification of filgotinib in rat plasma using tofacitinib as an internal standard (IS) as per the Food and Drug Administration regulatory guidelines. Filgotinib and the IS were extracted from rat plasma using ethyl acetate as an extraction solvent and chromatographed using an isocratic mobile phase (0.2% formic acid:acetonitrile; 20:80, v/v) at a flow rate of 0.9 mL/min on a Gemini C18 column. Filgotinib and the IS were eluted at ~1.31 and 0.89 min, respectively. The MS/MS ion transitions monitored were m/z 426.3 → 291.3 and m/z 313.2 → 149.2 for filgotinib and the IS, respectively. The calibration range was 0.78–1924 ng/mL. No matrix effect and carryover were observed. Intra- and inter-day accuracies and precisions were within the acceptance range. Filgotinib was stable for three freeze–thaw cycles: on bench-top up to 6 h, in an autosampler up to 21 h, and at −80 ° C for 1 month. This novel method has been applied to a pharmacokinetic study in rats.  相似文献   

20.
A liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the quantification of tunicamycin in rat plasma as per regulatory guideline. Chromatography of tunicamycin and the IS in the processed plasma samples was achieved on an X‐Terra phenyl column using a binary gradient (mobile phase A, acetonitrile and mobile phase B, 5 mm ammonium formate) elution at a flow rate of 0.6 ml/min. LC–MS/MS was operated under the multiple reaction monitoring mode using the electrospray ionization technique in positive ion mode and the transitions of m/z 817.18 → 596.10, 831.43 → 610.10, 845.29 → 624.10, 859.23 → 638.10 and 309.24 → 163.20 were used to quantitate homologs A–D and the IS, respectively. The total chromatographic run time was 4.5 min. The correlation coefficient (r2) was >0.99 for all homologs with accuracy 90.7–107.4% and precision 0.74–15.1%. The recovery of homologs was 78.6–90.2%. No carryover was observed and the matrix effect was minimal. Tunicamycin four homologs were found to be stable on the bench‐top for 6 h, for up to three freeze–thaw cycles, in the injector for 24 h and for 1 month at ?80 ° C. The applicability of the validated method has been demonstrated in a rat pharmacokinetic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号