首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The folding and aggregation behavior of a pair of oligo(phenylene ethynylene) (OPE) foldamers are investigated by means of UV/Vis absorption and circular dichroism spectroscopy. With identical OPE backbones, two foldamers, 1 with alkyl side groups and 2 with triethylene glycol side chains, manifest similar helical conformations in solutions in n‐hexane and methanol, respectively. However, disparate and competing folding and aggregation processes are observed in alternative solvents. In cyclohexane, oligomer 1 initially adopts the helical conformation, but the self‐aggregation of unfolded chains, as a minor component, gradually drives the folding–unfolding transition eventually to the unfolded aggregate state completely. In contrast, in aqueous solution (CH3OH/H2O) both folded and unfolded oligomer 2 appear to undergo self‐association; aggregates of the folded chains are thermodynamically more stable. In solutions with a high H2O content, self‐aggregation among unfolded oligomers is kinetically favored; these oligomers very slowly transform into aggregates of helical structures with greater thermodynamic stability. The folded–unfolded conformational switch thus takes place with the free (nonaggregated) molecules, and the very slow folding transition is due to the low concentration of molecularly dispersed oligomers.  相似文献   

2.
The key to optimizing the properties of molecular scale wires lies in understanding and controlling the solid-state morphologies. This paper examines the influence of oligomer chain length, solvent, and concentration on the formation of nanoscale ribbons on mica substrates from solutions of oligo(p-phenyleneethynylene)s (OPEs) with hexyloxy side chains and thioacetyl end groups. The OPEs are of different molecular chain lengths, in which the numbers ofp-dihexyloxyphenyleneethynylene repeat units, n, are 1, 3, 5, and 7, respectively, with their two ends capped with 4-thioacetylphenyl alligator groups. The atomic force microscope (AFM) is employed to investigate the thin film morphology and study the self-assembled organizations. Solvent and concentration are found to exert a strong influence on thin film morphology. Under suitable conditions, OPEs with 7 p-dihexyloxyphenyleneethynylene repeat units are driven to form micrometer-long nanoribbons, oriented preferably along the 3-fold symmetry axes of the mica substrate. The cross section of the nanoribbons is composed of 7 molecules as evaluated by AFM characterization. On the other hand, oligomers with shorter chain lengths (n = 1, 3, and 5) produce thin films featuring globular nanoaggregates, chains consisting of elongated grains, and rods, respectively. Plausible reasons for the variation in thin film morphology are discussed, based on the results obtained from investigation of oligomer chain length, solvent, and concentration effects. A subtle balance among molecular size and physicochemical properties of solute molecules, solvent molecules, and substrate is crucial for the formation of desired structures. Among them, oligomer chain length plays a key role in thin film morphology, and the critical number of repeat units in OPE/poly(p-phenyleneethynylene) molecules for the formation of nanoribbon structures with a molecular cross section is supposed to be 8 or 9.  相似文献   

3.
A new series of copolymer poly(N‐hexadecylmethacrylamide‐co‐dinaphthalen‐2‐yl 2‐allylmalonate) poly(HDMA‐co‐DNAM)s containing swallow‐tailed double naphthyl groups and long alkyl group were designed and synthesized. The behavior of copolymer molecular arranging on water surface, patterning properties of copolymer LB films, and photochemical reactions in ultrathin film were investigated. The poly(HDMA‐co‐DNAM)s could form a stable, well‐defined molecular orientation Langmuir monolayer at air/water interface. The polymer main chain was lying flat on water surface and the side chains attached to the main chain stretching out at the angle of about 50°. The results obtained showed that a well‐ordered layer‐by‐layer structure was successfully controlled in LB films, in which most of naphthyl groups in poly(HDMA‐co‐DNAM)s LB films were in dimer and the copolymer LB films were decomposed hardly upon irradiation of deep UV light. We found that the exposed and unexposed regions of the poly(HDMA‐co‐DNAM)s copolymer LB films had solubility differentiation in gold etchant, which is a mixed solution of I2/NH4I/C2H5OH/H2O. Therefore, we could obtain gold photopattern with the maximal resolution of the employed mask without any development process. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
A series of vinylene‐linked copolymers based on electron‐deficient benzobisthiazole and electron‐rich fluorene moieties were synthesized via Horner–Wadsworth–Emmons polymerization. Three different polymers P1 , P2 , and P3 , were prepared bearing octyl, 3,7‐dimethyloctyl, and 2‐(2‐ethoxy)ethoxyethyl side chains, respectively. The polymers all possessed moderate molecular weights, good solubility in aprotic organic solvents, and high fluorescence quantum efficiencies in dilute solutions. P2 , which bore branched 3,7‐dimethyloctyl side chains, exhibited better solubility than the other polymers, but also exhibited the lowest thermal decomposition temperature of all polymers. Overall, the impact of the side chains on the polymers optical properties in solution was negligible as all three polymers gave similar absorption and emission spectra in both solution and film. Guest‐host light‐emitting diodes using dilute blends of the polymers in a poly(N‐vinylcarbazole) host gave blue‐green emission with P2 exhibiting the highest luminous efficiency, 0.61 Cd/A at ~500 nm. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
《Electroanalysis》2003,15(2):97-102
The oxidation of dimethyl sulfoxide (DMSO) to dimethyl sulfone (DMSO2) is representative of numerous anodic oxygen‐transfer reactions of organosulfur compounds that suffer from slow kinetics at noble metal electrodes. Anodic voltammetric data for DMSO are examined at various RuO2‐film electrodes prepared by thermal deposition on titanium substrates. The response for DMSO is slightly larger at RuO2 films prepared in a flame as compared with films prepared in a furnace; however, temperature is more easily controlled in the furnace. Doping of the RuO2 films with Fe(III) further improves the sensitivity of anodic response for DMSO. Optimal response is obtained at an Fe(III)‐doped RuO2‐film electrode prepared using a deposition solution of 50 mM RuCl3 and 10 mM FeCl3 in a 1 : 1 mixture of isopropanol and 12 M HCl at an annealing temperature of 450 °C. The Levich plot (i vs. ω1/2) and Koutecky‐Levich plot (1/i vs. 1/ω1/2) of amperometric data for the oxidation of DMSO at an Fe(III)‐doped RuO2‐film electrode configured as a rotated disk are consistent with an anodic response controlled by mass‐transport processes at low rotational velocities. Flow injection data demonstrate that Fe(III)‐doped RuO2‐film electrodes exhibit detection capability for methionine and cysteine in addition to DMSO. Detection limits for 100‐μL injections of the three compounds are ca. 3.2×10?4 mM, i.e., ca. 32 pmol.  相似文献   

6.
In this work, poly(3‐hexylthiophene) (P3HT) films prepared using the matrix‐assisted pulsed laser evaporation (MAPLE) technique are shown to possess morphological structures that are dependent on molecular weight (MW). Specifically, the structures of low MW samples of MAPLE‐deposited film are composed of crystallites/aggregates embedded within highly disordered environments, whereas those of high MW samples are composed of aggregated domains connected by long polymer chains. Additionally, the crystallite size along the side‐chain (100) direction decreases, whereas the conjugation length increases with increasing molecular weight. This is qualitatively similar to the structure of spin‐cast films, though the MAPLE‐deposited films are more disordered. In‐plane carrier mobilities in the MAPLE‐deposited samples increase with MW, consistent with the notion that longer chains bridge adjacent aggregated domains thereby facilitating more effective charge transport. The carrier mobilities in the MAPLE‐deposited simples are consistently lower than those in the solvent‐cast samples for all molecular weights, consistent with the shorter conjugation length in samples prepared by this deposition technique. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 652–662  相似文献   

7.
In this study, poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐graft‐poly(oxyethylene methacrylate), P(VDF‐co‐CTFE)‐g‐POEM, an amphiphilic comb copolymer with hydrophobic P(VDF‐co‐CTFE) backbone and hydrophilic POEM side chains at 73:27 wt % was synthesized. The POEM side chains were grafted from the P(VDF‐co‐CTFE) mainchain backbone via atom transfer radical polymerization (ATRP) using direct initiation of the chlorine atoms in CTFE units. Synthesis of microphase‐separated P(VDF‐co‐CTFE)‐g‐POEM comb copolymer was successful, as confirmed by nuclear magnetic resonance (1H NMR), FTIR spectroscopy, and transmission electron microscopy (TEM). Nanocomposite films were prepared using the comb copolymer as a template film and the in situ reduction of AgCF3SO3 precursor to silver nanoparticles under UV irradiation. Silver nanoparticles with 4–8 nm in average size were in situ created in the solid state template film, as revealed by TEM, UV–visible spectroscopy, and wide angle X‐ray scattering (WAXS). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) presented the selective incorporation and the in situ growth of silver nanoparticles within the hydrophilic POEM domains of microphase‐separated comb copolymer film. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 702–709, 2008  相似文献   

8.
Activation‐free copolymeric films possessing high selectivity to target proteins and low biofouling background are prepared via controlled radical polymerization. The copolymeric films are generated by surface‐initiated activators regenerated by electron transfer atom transfer radical polymerization (SI‐ARGET ATRP) of N‐acryloxysuccinimide (NAS) and oligo(ethylene glycol) methyl ether methacrylate (OEGMEMA) by controlling the molar feed ratio of the two monomers. The formation of copolymeric films is characterized by ellipsometry, contact angle goniometry, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The prepared copolymeric films are biotinylated without an activation step. Biotin–streptavidin association is employed as a model system to investigate both selective binding and the relevant signal‐to‐noise (S/N) ratio. When the molar feed ratio of NAS and OEGMEMA is 2:8, the copolymeric film is optimized to give the highest S/N ratio (339.8) according to surface plasmon resonance studies. The highly selective bioconjugation is used to generate micropatterns of rhodamine‐conjugated streptavidin on the copolymeric film. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 329–337  相似文献   

9.
Poly[(3‐hexyliminomethyl)thiophene]s (P3HITs) were synthesized from the polymerizations of 2,5‐dibromo‐(hexyliminomethyl)thiophene and 5‐bromo‐2‐iodo‐3‐(hexyliminomethyl)thiophene by Grignard metathesis method. The corresponding P3HITs with low regioregularity (70%) and high regioregularity (95%) were obtained, respectively. UV–vis and photoluminescence spectra of P3HIT were dependent on the regioregularity and solvent polarity. By hydrolysis of the imino groups in the side chains under acidic conditions, P3HIT was successfully converted into the polythiophene (P3TCHO) having aldehyde groups. This transformation was also performed facilely by exposing the P3HIT film to HCl gas to give the polythiophene having aldehyde moiety. The reverse way from aldehyde to imine was also successfully demonstrated by treating the film with triethylamine vapor. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Dithieno[3,2-b:2',3'-d]pyrrole-based terthiophene and quaterthiophene analogues have been prepared from N-functionalized dithieno[3,2-b:2',3'-d]pyrroles (DTPs) via Stille coupling. In order to thoroughly study the structure-function property relationships within these DTP-based oligothiophenes, an oligomer series was prepared that allows for the investigation of a number of structural effects including chain length, thiophene functionalization, and pyrrole N-functionalization. As pyrrole N-functionalization allows the incorporation of solubilizing side chains without the unwanted steric interactions that typically reduce backbone planarity, the effect of the bulk of these side chains on the optical properties in both solution and the solid state has been carefully investigated. The DTP-based quaterthiophene, N-tert-butyl-2,6-bis(2'-thienyl)dithieno[3,2-b:2',3'-d]pyrrole was characterized via X-ray crystallography and was found to crystallize in the monoclinic space group P2(1)/c with a = 17.489(4) ?, b = 7.8855(16) ?, c = 14.540(3) ?, β = 108.37(3)°, and Z = 4. The effect of side chains on the solid-state packing of the DTP-based quaterthiophenes was further investigated through X-ray diffraction of solution processed thin films. In comparison to the parent oligothiophenes, the resulting DTP-based systems exhibit enhanced fluorescence efficiencies in solution (up to 66%) and measurable solid-state emission from thin films.  相似文献   

11.
The properties of phosphonium polyelectrolytes (PELs) were evaluated in an effort to assess the influence of both side chain and main chain composition. The influence of side chain was examined by comparing properties of a series of PELs having hydrophobic octyloxy side chains to those of structural analogues lacking the side chains. The influence exerted by backbone flexibility/length of spacer between charges was revealed by comparing properties of two series of polymers with a variable number of methylene units between phosphonium charge‐bearing sites. Side chain composition and spacing between phosphonium units lead to noteworthy influence on thermal stability, glass transition, and crystallinity. The molecular structure of PELs also correlates with trends in film morphology and critical surface energy of PEL dip‐cast films. Sensitivity of morphology to humidity or water in the casting solvent was observed. Supramolecular assembly of films via layer‐by‐layer deposition of PELs alternating with anionic polythiophene derivative layers was also undertaken. The linearity of film growth, amount of material deposited in each bilayer, polycation:polyanion ratio, and film roughness all show noteworthy trends that depend on both the presence/absence of side chains and on spacing between ionic centers. The relationship between side chain and spacer on bactericidal activity against Staphylococcus aureus and Escherichia coli was assessed. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 24–34  相似文献   

12.
Honeycomb-patterned polymer films with tunable pore size and regularity of ordered two- or three-dimensional hexagonal arrays have met with widespread interest in recent years in different areas, for instance as separation and superhydrophobic materials. Herein, 2D honeycomb-patterned films of amphiphilic ferrocenyl-based oligomer with cholesterol as side chains were prepared by the breath-figure method on solid surfaces and their surface-wetting behavior were tested. These films can be simply prepared by spreading a mixture of polymer and organic solvents on a solid surface under moist airflow and at an air/water interface without any extra moist airflow. An ordered 2D hexagonal array of pores with monodisperse size distribution can be obtained over a large area by changing various influencing factors, including humidity, wet volume, concentration, selective solvent, and spreading method, which provides a facile route to regulate the morphology of patterned porous films. The surface-wetting behavior indicates that a higher hydrophobicity of the ferrocenyl-based oligomer honeycomb films can be obtained by modulating the pore size and regularity. It is expected that this could promote the potential application of ordered porous polymer films in hydrophobic materials and biochemistry.  相似文献   

13.
Fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer and N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer were reacted with phenylene‐ and biphenylene‐bridged ethoxysilanes under alkaline conditions to yield cross‐linked fluoroalkyl end‐capped oligomeric composites possessing aromatic siloxane segments as core units. These isolated fluorinated composite powders were found to be nanometer size‐controlled fine particles with a good dispersibility and stability in water and organic solvents. Nitrogen adsorption–desorption isotherms confirmed the presence of micropores in these nanocomposites; the micropore size estimated by the HK method was 0.7–0.8 nm. Interestingly, fluorinated nanocomposites possessing a higher micropore volume ratio were found to exhibit a selective encapsulation ability of fullerene into their composite cores. These fluorinated nanocomposites were also applied to the surface modification of poly(methyl methacrylate) film, resulting in a good oleophobicity imparted by fluorine on the surface. In addition, fluorescence emission was visibly observed only from the modified PMMA film surface treated with fluorinated nanocomposites possessing biphenylene units when irradiated by light. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A solvent responsive dynamic nanoscale metal‐organic framework (NMOF) [Zn( 1 a )(H2O)2] has been devised based on the self‐assembly of ZnII and asymmetric bola‐amphiphilic oligo‐(p‐phenyleneethynylene) (OPE) dicarboxylate linker 1 a having dodecyl and triethyleneglycolmonomethylether (TEG, polar) side chains. In THF solvent, NMOF showed nanovesicular morphology ( NMOF‐1 ) with surface decorated dodecyl chains. In water and methanol, NMOF exhibited inverse‐nanovesicle ( NMOF‐2 ) and nanoscroll ( NMOF‐3 ) morphology, respectively, with surface projected TEG chains. The pre‐formed NMOFs also unveiled reversible solvent responsive transformation of different morphologies. The flexible NMOF showed cyan emission and no cytotoxicity, allowing live cell imaging. Cisplatin (14.4 wt %) and doxorubicin (4.1 wt %) were encapsulated in NMOF‐1 by non‐covalent interactions and, in vitro and in vivo drug release was studied. The drug loaded NMOFs exhibited micromolar cytotoxicity.  相似文献   

15.
Fluoroalkyl end‐capped oligomers were solubilized into a variety of ionic liquids such as N‐methylpyrazolium tetrafluoroborate, 3‐methylpyrazolium tetrafluoroborate and 1‐butyl‐3‐methylimidazolium hexafluorophosphate, and these fluorinated oligomers were able to reduce the surface tension of these ionic liquids. Interestingly, these fluorinated oligomers were able to solubilize fullerene into ionic liquids effectively. Fluoroalkyl end‐capped fullerene co‐oligomers, which were prepared by the oligomerizations of fluoroalkanoyl peroxides with radical polymerizable monomers such as acryloylmorpholine in the presence of fullerene, were more effective in solubilizing fullerene into ionic liquids compared to the corresponding fluoroalkyl end‐capped homo‐oligomers possessing no fullerene units. Fluoroalkyl end‐capped fullerene co‐oligomers/fullerene/ionic liquid complexes thus obtained were applied to the arrangements of fullerenes above the poly(methyl methacrylate) (PMMA) surface, and the higher fluorescent intensity of fullerene was obtained in the modified PMMA surface, although the reverse side of this modified film surface afforded an extremely weak fluorescent intensity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The demand of stretchability for a semiconducting polymer has increased to realize wearable devices and sensors. However, studies involving intrinsically stretchable π‐conjugated polymers are still limited. Here, we develop a soft‐polythiophene derivative, P3SiHT, with a trisiloxane unit in the side chains via a hexylene spacer unit. In addition, diblock (P3HT‐b‐P3SiHT) and triblock (P3HT‐b‐P3SiHT‐b‐P3HT) copolymers could be synthesized based on Kumada catalyst‐transfer polycondensation. The results of atomic force microscopy and grazing incidence small‐angle X‐ray scattering indicate that the block copolymer thin films form a phase‐separated structure between the P3HT and P3SiHT domains. The organic thin film transistor devices were prepared to assess the electrical properties of the block polymers. As a result, the block copolymers showed comparable or even higher hole mobility than that of P3HT homopolymer, thus due to the enhanced phase‐separation and thereby charge transportation. The mechanical test of the bulk films indicates that P3HT‐b‐P3SiHT‐b‐P3HT shows lower tensile modulus and longer elongation at break than P3HT homopolymer and other diblock copolymers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1787–1794  相似文献   

17.
The effect of the chain constraint on the glass‐transition temperature of polystyrene (pS) was studied in the context of polymer tethering to curved surfaces. The synthesis and characterization of silica‐graft‐polystyrene (SiO2g‐pS) hybrid nanoparticles is reported. Silica nanoparticles possessing covalently bound pS chains were prepared by the atom transfer radical polymerization of styrene from functionalized colloidal surfaces. These hybrid nanoparticles serve as interesting examples of spherical polymer brushes, as a high density of grafted pS was achieved on the inorganic colloid. The confirmation of a brushlike extension of immobilized chains in a good solvent was obtained with dynamic light scattering in toluene of SiO2g‐pS colloids possessing various molar masses of tethered pS. The solid‐state morphology of SiO2g‐pS ultrathin films was assessed with transmission electron microscopy, and this confirmed that the silica colloids were well‐dispersed in a matrix of the tethered polymer. Differential scanning calorimetry was used to study the effects of tethering and chain immobilization on the glass‐transition temperature of pS. The measured glass‐transition temperature of annealed bulk films of the hybrid nanoparticles was elevated with respect to the value for pure bulk pS. The enhancements ranged from 13 to 2 K for SiO2g‐pS brushes possessing tethered pS with number‐average molecular weights of 5230 and 32,670 g/mol, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2667–2676, 2002  相似文献   

18.
Donor–acceptor (D–A) conjugated copolymers are one of known classes of organic optoelectronic materials and have been well developed. However, less attention has been paid on acceptor–acceptor (A–A) conjugated analogs. In this work, two types of A–A conjugated copolymers, namely P1‐Cn and P2‐Cn (n is the carbon number of their alkyl side chains), were designed and synthesized based on perylenediimide ( PDI ) and 2,1,3‐benzothiadiazole ( BT ). Different from P1‐Cn , P2‐Cn polymers have additional acetylene π‐spacers between PDI and BT and thus hold a more planar backbone configuration. Property studies revealed that P2‐Cn polymers possess a much red‐extended UV–vis absorption spectrum, stronger π–π interchain interactions, and one‐order larger electron mobility in their neat film state than P1‐Cn . However, all‐polymer solar cells using P1‐Cn as acceptor component and poly(3‐hexyl thiophene) or poly(2,7‐(9,9‐didodecyl‐fluoene)‐alt?5,5′‐(4,7‐dithienyl‐2‐yl‐2,1,3‐benzothiadiazole) as donor component exhibited much better performance than those based on P2‐Cn . Apart from their backbone chemical structure, the side chains were found to have little influence on the photophysical, electrochemical, and photovoltaic properties for both P1‐Cn and P2‐Cn polymers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1200–1215  相似文献   

19.
Conjugated block copolymers are potentially useful for organic electronic applications and the study of interfacial charge and energy transfer processes; yet few synthetic methods are available to prepare polymers with well‐defined conjugated blocks. Here, we report the synthesis and thin film morphology of a series of conjugated poly(3‐hexylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3HT‐b‐PF) and poly(3‐dodecylthiophene)‐block‐poly(9,9‐dioctylfluorene) (P3DDT‐b‐PF) block copolymers prepared by functional external initiators and click chemistry. Functional group control is quantified by proton nuclear magnetic resonance spectroscopy, size‐exclusion chromatography, and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. The thin film morphology of the resulting all‐conjugated block copolymers is analyzed by a combination of grazing‐incidence X‐ray scattering, atomic force microscopy, and transmission electron microscopy. Crystallization of the P3HT or P3DDT blocks is present in thin films for all materials studied, and P3DDT‐b‐PF films exhibit significant PF/P3DDT co‐crystallization. Processing conditions are found to impact thin film crystallinity and orientation of the π–π stacking direction of polymer crystallites. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 154–163  相似文献   

20.
Copolymerization of acrylic acid and p‐chloromethylstyrene (p‐CMS) in dioxane initiated with α,α′‐azobisisobutyronitrile was carried out to produce macroinitiator P(AA‐co‐CMS) containing PhCH2Cl group at 65°C. Then methyl methacrylate was grafted onto P(AA‐co‐CMS) backbone using PhCH2Cl group as an initiation site and FeCl2/triphenyl phosphine complex as a catalyst. The resulted copolymer (AA‐co‐CMS)‐g‐PMMA with a comb‐like branched structure has a hydrophilic backbone (PAA) and hydrophobic side chains (PMMA). Compositions and structures of macroinitiator and the grafted product of P(AA‐co‐CMS)‐g‐PMMA were determined by 1H‐NMR, infrared (IR), and gel permeation chromatography (GPC). The average graft number, the average length of branch chains, the graft ratio, and the graft efficiency were investigated. The swelling behavior of the comb‐like branched polymer was also investigated. The gradual increase of swelling ratios was accompanied by an increase of pH and temperature. The kinetic exponents indicated that the swelling transport mechanisms transformed from Fickian diffusion to non‐Fickian transport as the decreasing pH. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号