首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We make the case for benzo[c]quinolin‐6‐ylidene ( 1 ) as a strongly electron‐donating carbene ligand. The facile synthesis of 6‐trifluoromethanesulfonylbenzo[c]quinolizinium trifluoromethanesulfonate ( 2 ) gives straightforward access to a useful precursor for oxidative addition to low‐valent metals, to yield the desired carbene complexes. This concept has been achieved in the case of [Mn(benzo[c]quinolin‐6‐ylidene)(CO)5]+ ( 15 ) and [Pd(benzo[c]quinolin‐6‐ylidene)(PPh3)2(L)]2+ L=THF ( 21 ), OTf ( 22 ) or pyridine ( 23 ). Attempts to coordinate to nickel result in coupling products from two carbene precursor fragments. The CO IR‐stretching‐frequency data for the manganese compound suggests benzo[c]quinolin‐6‐ylidene is at least as strong a donor as any heteroatom‐stabilised carbene ligand reported.  相似文献   

2.
3.
4.
Cyclic (amino)(aryl)carbenes (CAArCs) result from the replacement of the alkyl substituent of cyclic (alkyl)(amino) carbenes (CAACs) by an aryl group. This structural modification leads to enhanced electrophilicity of the carbene center with retention of the high nucleophilicity of CAACs, and therefore CAArCs feature a small singlet–triplet gap. The isoindolium precursors are readily prepared in good yields, and deprotonation at low temperature, in the presence of [RhCl(cod)]2 and [(Me2S)AuCl] lead to air‐stable rhodium and gold CAArC‐supported complexes, respectively. The rhodium complexes promote the [3+2] cycloaddition of diphenylcyclopropenone with ethyl phenylpropiolate, and induce the addition of 2‐vinylpyridine to alkenes by CH activation. The gold complexes allow for the catalytic three‐component preparation of 1,2‐dihydroquinolines from aniline and phenyl acetylene. These preliminary results illustrate the potential of CAArC ligands in transition‐metal catalysis.  相似文献   

5.
6.
A series of six‐ and seven‐membered expanded‐ring N‐heterocyclic carbene (er‐NHC) gold(I) complexes has been synthesized using different synthetic approaches. Complexes with weakly coordinating anions [(er‐NHC)AuX] (X?=BF4?, NTf2?, OTf?) were generated in solution. According to their 13C NMR spectra, the ionic character of the complexes increases in the order X?=Cl?<NTf2?<OTf?<BF4?. Additional factors for stabilization of the cationic complexes are expansion of the NHC ring and the attachment of bulky substituents at the nitrogen atoms. These er‐NHCs are bulkier ligands and stronger electron donors than conventional NHCs as well as phosphines and sulfides and provide more stabilization of [(L)Au+] cations. A comparative study has been carried out of the catalytic activities of five‐, six‐, and seven‐membered carbene complexes [(NHC)AuX], [(Ph3P)AuX], [(Me2S)AuX], and inorganic compounds of gold in model reactions of indole and benzofuran synthesis. It was found that increased ionic character of the complexes was correlated with increased catalytic activity in the cyclization reactions. As a result, we developed an unprecedentedly active monoligand cationic [(THD‐Dipp)Au]BF4 (1,3‐bis(2,6‐diisopropylphenyl)‐3,4,5,6‐tetrahydrodiazepin‐2‐ylidene gold(I) tetrafluoroborate) catalyst bearing seven‐membered‐ring carbene and bulky Dipp substituents. Quantitative yields of cyclized products were attained in several minutes at room temperature at 1 mol % catalyst loadings. The experimental observations were rationalized and fully supported by DFT calculations.  相似文献   

7.
8.
N‐heterocyclic carbenes (NHCs) based on imidazole‐2‐ylidene ( 1 ) or the saturated imidazolidine‐2‐ylidene ( 2 ) scaffolds are long‐lived singlet carbenes. Both benefit from inductive stabilization of the sigma lone pair on carbon by neighboring N atoms and delocalization of the N pi lone pairs into the nominally vacant p‐pi atomic orbital at the carbene carbon. With thermochemical schemes G4 and CBS‐QB3, we estimate the relative thermodynamic stabilization of smaller ring carbenes and acyclic species which may share the keys to NHC stability. These include four‐membered ring systems incorporating the carbene center, two trivalent N centers, and either a boron or a phosphorus atom to complete the ring. Amino‐substituted cyclopropenylidenes have been reported but three‐membered rings containing the carbene center and two N atoms are not known. Our calculations suggest that amino‐substituted cyclopropenylidenes are comparable in stability to the four‐membered NHCs but that diazacyclopropanylidenes would be substantially less effectively stabilized. Concluding the series are acyclic carbenes with and without neighboring N atoms and a series of “two‐membered ring” azapropadienenylidene cations of form :C?N?W with W = an electron‐withdrawing agent. We have studied W = NO2, CH2(+), CF2(+), and (CN)2C(+). Although these systems display a degree of stabilization and carbene‐like electronic structure, the stability of the NHCs is unsurpassed. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Spiro and fused indoles are attractive heterocyclic compounds with broad and promising activities in various therapeutic fields, and thus, have become the synthetic targets of organic chemists. In this account, we describe our recent progress in the synthesis of a series of spiro and fused indole derivatives through N‐heterocyclic carbene (NHC)‐catalyzed annulations of diverse NHC‐bound intermediates derived from α,β‐unsaturated aldehydes. Particularly, the novel synthesized isatin‐derived α‐bromoenals may be used as versatile 1,3‐biselectrophile synthons for combination with a range of bisnucleophiles for potentially divergent syntheses of skeletally diverse spirooxindoles in the future.  相似文献   

10.
11.
12.
A family of seven cationic gold complexes that contain both an alkyl substituted π‐allene ligand and an electron‐rich, sterically hindered supporting ligand was isolated in >90 % yield and characterized by spectroscopy and, in three cases, by X‐ray crystallography. Solution‐phase and solid‐state analysis of these complexes established preferential binding of gold to the less substituted C?C bond of the allene and to the allene π face trans to the substituent on the uncomplexed allenyl C?C bond. Kinetic analysis of intermolecular allene exchange established two‐term rate laws of the form rate=k1[complex]+k2[complex][allene] consistent with allene‐independent and allene‐dependent exchange pathways with energy barriers of ΔG1=17.4–18.8 and ΔG2=15.2–17.6 kcal mol?1, respectively. Variable temperature (VT) NMR analysis revealed fluxional behavior consistent with facile (ΔG=8.9–11.4 kcal mol?1) intramolecular exchange of the allene π faces through η1‐allene transition states and/or intermediates that retain a staggered arrangement of the allene substituents. VT NMR/spin saturation transfer analysis of [{P(tBu)2o‐binaphthyl}Au(η2‐4,5‐nonadiene) ]+SbF6? ( 5 ), which contains elements of chirality in both the phosphine and allene ligands, revealed no epimerization of the allene ligand below the threshold for intermolecular allene exchange (ΔG298K=17.4 kcal mol?1), which ruled out the participation of a η1‐allylic cation species in the low‐energy π‐face exchange process for this complex.  相似文献   

13.
A series of dinuclear gold σ,π‐propyne acetylide complexes were prepared and tested for their catalytic ability in dual gold catalysis that was based on the reaction of an electrophilic π‐complex of gold with a gold acetylide. The air‐stable and storable catalysts can be isolated as silver‐free catalysts in their activated form. These dual catalysts allow a fast initiation phase for the dual catalytic cycles without the need for additional additives for acetylide formation. Because propyne serves as a throw‐away ligand, no traces of the precatalyst are generated. Based on the fast initiation process, side products are minimized and reaction rates are higher for these catalysts. A series of test reactions were used to demonstrate the general applicability of these catalysts. Lower catalyst loadings, faster reaction rates, and better selectivity, combined with the practicability of these catalysts, make them ideal catalysts for dual gold catalysis.  相似文献   

14.
15.
Although about 200,000 metric tons of γ‐MnO2 are used annually worldwide for industrial applications, the γ‐MnO2 structure is still known to possess a highly ambiguous crystal lattice. To better understand the γ‐MnO2 atomic structure, hexagon‐based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon‐based nanoarchitectures, clearly show the coexistence of akhtenskite (ε‐MnO2), pyrolusite (β‐MnO2), and ramsdellite in the so‐called γ‐MnO2 phase and verified the heterogeneous phase assembly of the γ‐MnO2 state, which violates the well‐known “De Wolff” model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous γ‐MnO2 assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous γ‐MnO2 system have structural similarities and a high lattice matches with pyrolusite (β‐MnO2). The as‐obtained γ‐MnO2 nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase‐change materials of inorganic salts, such as phase separation and supercooling‐effects, thereby showing prospect in energy‐saving applications in future “smart‐house” systems.  相似文献   

16.
Gold(I) complexes of 1‐[1‐(2,6‐dimethylphenylimino)alkyl]‐3‐(mesityl)imidazol‐2‐ylidene (C^ImineR), 1,3‐dimesitylimidazol‐2‐ylidene (IMes) and of the corresponding thione derivatives (S^ImineR and IMesS) were prepared and structurally characterised. The solid‐state structure of the C^ImineR and S^ImineR gold(I) complexes showed monodentate coordination of the ligand and a dangling imine group that could bind reversibly to the metal centre to stabilise otherwise unstable catalytic intermediates. Interestingly, reaction of C^IminetBu with [AuCl(SMe2)] led to the formation of [(C^IminetBu)AuCl], which rearranges upon crystallisation into the unusual complex cation [(C^IminetBu)2Au]+, with AuCl2? as the counterion. The activity of the gold complexes in the hydroamination of phenylacetylene with substituted anilines was tested and compared to control catalyst systems. The best catalytic performance was obtained with [(C^IminetBu)AuCl], with the exclusive formation of the Markovnikov addition product in excellent yield (>95 %) regardless of the substituents on aniline.  相似文献   

17.
This work describes the preparation of a series of pyrene‐tagged N‐heterocyclic carbene complexes of iridium, and their use in two benchmark borrowing hydrogen reactions: the reduction of ketones by transfer hydrogenation and the β‐alkylation of secondary alcohols with primary alcohols. The detailed study of these homogeneously catalysed reactions reveals several important implications regarding the strong influence of the pyrene tags in the catalysts. First, the catalytic activity is partially inhibited by addition of an external amount of pyrene, but only when pyrene‐tagged catalysts and aromatic substrates are used. Second, the rate order of the reaction is highly dependent on the nature of the substrates and the ligand. When pyrene‐tagged catalysts and aromatic substrates are used, the reaction follows a zero‐order dependence on the concentration of the substrate. All other combinations afford a second‐order rate in the substrates. And third, the presence or absence of the pyrene functionality in the catalyst also influences the reaction order with respect to the concentration of the catalyst. Pyrene‐containing catalysts display a fractional rate order of below 1. Finally, two pyrene‐tagged catalysts were supported onto reduced‐graphene oxide (rGO), and used as heterogeneous catalysts. While the dimetallic catalyst was effectively recycled 12 times, the monometallic catalyst maintained its activity for only three runs.  相似文献   

18.
A novel, N‐heterocyclic carbene (NHC) catalyzed direct oxidative coupling of styrenes with aldehydes has been described for the synthesis of α,β‐epoxy ketones in good yields. This unprecedented regioselective oxidative coupling employs NBS/DBU/DMSO (DBU=1,8‐diazabicyclo [5.4. 0] undec‐7‐ene, DMSO=dimethylsulfoxide, NBS=N‐bromosuccinimide) as an oxidative system at ambient conditions. Additionally, first NHC‐catalyzed Darzens reaction of α‐bromoketones and aldehydes under mild reaction conditions has also been described. Interestingly, mechanistic studies have revealed the preferred reactivity of NHC with alkene/α‐bromoketone rather than aldehydes, thus proceeding via the ketodeoxy Breslow intermediate.  相似文献   

19.
20.
X‐ray vision : Single‐crystal XRD experiments (see picture) reveal the excited‐state structure of the photomagnetic heterobimetallic title complex. The system shows a decrease in all the iron–ligand bond lengths, suggesting that photoexcitation involves a ligand‐to‐metal charge transfer or a change in the superexchange coupling between the metal centers.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号