首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One‐electron reduction of C2‐arylated 1,3‐imidazoli(ni)um salts (IPrAr)Br (Ar=Ph, 3 a ; 4‐DMP, 3 b ; 4‐DMP=4‐Me2NC6H4) and (SIPrAr)I (Ar=Ph, 4 a ; 4‐Tol, 4 b ) derived from classical NHCs (IPr=:C{N(2,6‐iPr2C6H3)}2CHCH, 1 ; SIPr=:C{N(2,6‐iPr2C6H3)}2CH2CH2, 2 ) gave radicals [(IPrAr)]. (Ar=Ph, 5 a ; 4‐DMP, 5 b ) and [(SIPrAr)]. (Ar=Ph, 6 a ; 4‐Tol, 6 b ). Each of 5 a , b and 6 a , b exhibited a doublet EPR signal, a characteristic of monoradical species. The first solid‐state characterization of NHC‐derived carbon‐centered radicals 6 a , b by single‐crystal X‐ray diffraction is reported. DFT calculations indicate that the unpaired electron is mainly located at the original carbene carbon atom and stabilized by partial delocalization over the adjacent aryl group.  相似文献   

2.
3.
4.
An elegant general synthesis route for the preparation of two coordinate palladium(0) and platinum(0) complexes was developed by reacting commercially available tetrakis(triphenylphosphine)palladium/platinum with π‐accepting cyclic alkyl(amino) carbenes (cAACs). The complexes are characterized by NMR spectroscopy, mass spectrometry, and single‐crystal X‐ray diffraction. The palladium complexes exhibit sharp color changes (crystallochromism) from dark maroon to bright green if the C‐Pd‐C bond angle is sharpened by approximately 6°, which is chemically feasible by elimination of one lattice THF solvent molecule. The analogous dark orange‐colored platinum complexes are more rigid and thus do not show this phenomenon. Additionally, [(cAAC)2Pd/Pt] complexes can be quasi‐reversibly oxidized to their corresponding [(cAAC)2Pd/Pt]+ cations, as evidenced by cyclic voltammetry measurements. The bonding and stability are studied by theoretical calculations.  相似文献   

5.
A triangulene‐based C2‐symmetric 33 π‐conjugated stable neutral π‐radical, 2. , which possesses two dicyanomethylene groups and one oxo group, has been designed, synthesized, and isolated as an analogue of tris(dicyanomethylene) derivative 1. and trioxo derivative TOT. with C3 symmetry. Effects of molecular‐symmetry reduction and electron‐accepting substituents on this fused polycyclic neutral π‐radical system were studied in terms of their molecular structure, electronic‐spin structure, and electrochemical and optical properties with the help of theoretical calculations. Interestingly, this system ( 2. ) has a four‐stage redox ability, like TOT. , as well as low frontier energy levels and a small SOMO–LUMO gap, similar to 1. , in spite of the loss of the degenerate LUMOs in symmetry‐lowered 2. , which is associated with the attachment of the weaker electron‐accepting oxo group instead of the dicyanomethylene group in 1. . These prominent results are attributable to the structural and electronic properties in the triangulene‐based highly delocalized fused polycyclic neutral π‐radical system.  相似文献   

6.
Noncovalent interactions involving aromatic rings, such as π‐stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion‐corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzene???methane and cyclohexane???methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel‐displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non‐additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.  相似文献   

7.
AnOV is a π‐conjugated radical built from an anthracene (An) unit linked by a p‐phenylene to an oxoverdazyl (OV) moiety. The mono‐oxidized (cationic) form of AnOV was generated both electrochemically and photochemically (in the presence of an electron acceptor). The triplet nature (S=1) of the electronic ground state of AnOV + was demonstrated by combining spectroelectrochemistry, electron‐spin resonance (ESR) experiments, and ab initio molecular orbital (MO) calculations. The intramolecular spin alignment (ISA) within AnOV + results from the ferromagnetic coupling (Jelectrochem>0) of the two unpaired electrons located on the oxidized electron donor (An+) and on the pendant OV radical. The spin‐density distribution pattern of AnOV + is akin to that of AnOV when photopromoted ( AnOV *) to its high‐spin (HS) lowest excited quartet (S=3/2) state. This high‐spin state results from the ferromagnetic coupling (Jphotophys>0) of the triplet locally excited state of An (3An*) with the doublet ground state of OV. As a shared salient feature, AnOV + and AnOV * (HS) show a spin delocalization within the domain of activated An in either An+ or 3An* (nexus states) forms. The present study essentially contributes to establish and clarify relationships between electrochemical, photophysical, and photochemical pathways to achieve ISA processes within AnOV . In particular, we discuss the impact of the spin polarization of the unpaired electron of OV on electronic features of the An electron‐donating subunit. Close analysis of this polarizing interplay allows one to derive a novel functional paradigm to manipulate electron spins at the intramolecular level with light and under an external magnetic field. Indeed, two original functional elements are identified: light‐triggered donors of spin‐polarized electrons and spin‐selective electron acceptors, which are of potential interest for molecular spintronics.  相似文献   

8.
9.
10.
11.
The structural and electronic consequences of π–π and C?H/π interactions in two alkoxy‐substituted 1,8‐bis‐ ((propyloxyphenyl)ethynyl)naphthalenes are explored by using X‐ray crystallography and electronic structure computations. The crystal structure of analogue 4 , bearing an alkoxy side chain in the 4‐position of each of the phenyl rings, adopts a π‐stacked geometry, whereas analogue 8 , bearing alkoxy groups at both the 2‐ and the 5‐positions of each ring, has a geometry in which the rings are splayed away from a π‐stacked arrangement. Symmetry‐adapted perturbation theory analysis was performed on the two analogues to evaluate the interactions between the phenylethynyl arms in each molecule in terms of electrostatic, steric, polarization, and London dispersion components. The computations support the expectation that the π‐stacked geometry of the alkoxyphenyl units in 4 is simply a consequence of maximizing π–π interactions. However, the splayed geometry of 8 results from a more subtle competition between different noncovalent interactions: this geometry provides a favorable anti‐alignment of C?O bond dipoles, and two C?H/π interactions in which hydrogen atoms of the alkyl side chains interact favorably with the π electrons of the other phenyl ring. These favorable interactions overcome competing π–π interactions to give rise to a geometry in which the phenylethynyl substituents are in an offset, unstacked arrangement.  相似文献   

12.
13.
By utilizing stable carbenes with low‐lying LUMOs, coupling with the stable nucleophilic diaminocyclopropenylidene was achieved. This reaction resulted in the formation of two new and rare examples of a bent allene as well as the isolation of the first carbene–carbene heterodimer.  相似文献   

14.
An N‐heterocyclic carbene substituted by two expanded 9‐ethyl‐9‐fluorenyl groups was shown to bind an AuCl unit in an unusual manner, namely with the Au?X rod sitting out of the plane defined by the heterocyclic carbene unit. As shown by X‐ray studies and DFT calculations, the observed large pitch angle (21°) arises from an easy displacement of the gold(I) atom away from the carbene lone‐pair axis, combined with the stabilisation provided by weak CH???Au interactions involving aliphatic and aromatic H atoms of the NHC wingtips. Weak, intermolecular Cl???H bonds are likely to cooperate with the H???Au interactions to stabilise the out‐of‐plane conformation. A general belief until now was that tilt angles in NHC complexes arise mainly from steric effects within the first coordination sphere.  相似文献   

15.
π‐Conjugated thienylene? phenylene oligomers with fluorinated and dialkoxylated phenylene fragments have been designed and prepared to understand the interactions in fragment orbitals, the influence of the substituents (F, OMe) on the HOMO–LUMO gap, and the role of intramolecular non‐covalent cumulative interactions in the construction of π‐conjugated nanostructures. Their strong conjugation was also evidenced in the gas phase by UV photoelectron spectroscopy and theoretical calculations. These results can be explained by the crucial role of the relative energetic positions of the π orbitals of the dimethoxyphenylene, which was used to model the dialkoxyphenylene entity, in determining the π/π* orbital levels of the fluorinated phenylene entity. Dialkoxyphenylenes raise the HOMO orbitals, whereas fluorinated phenylenes lower the LUMO orbitals in the oligomers. In addition, the presence of S???F and H???F interactions in the fluorinated phenylene? thienylene compounds add to the S???O interactions in the mixed targets and contribute to the full conjugation in the oligomer, inducing weak inter‐ring angles between the involved aromatic cycles. These results, which showed extended conjugation of the π system, were corroborated by a narrow HOMO–LUMO gap (according to DFT calculations) and by a relatively strong maximum wavelength (as obtained by TD‐DFT calculations and experimental UV/Vis measurements). The crystallographic data of two mixed thienylene? (fluorinated and dialkoxylated phenylene) five‐ring oligomers agree with the above results and show the formation of quasi‐planar conformations with non‐covalent S???O, H???F, and S???F interactions. These studies in the solid and gas phases show the relevance of associating dialkoxyphenylene and fluorinated phenylene fragments with thiophene to lead to oligomers with improved electronic delocalization for electronic or optoelectronic devices.  相似文献   

16.
17.
The tri‐tert‐butylphenalenyl (TBPLY) radical exists as a π dimer in the crystal form with perfect overlapping of the singly occupied molecular orbitals (SOMOs) causing strong antiferromagnetic exchange interactions. 2,5‐Di‐tert‐butyl‐6‐oxophenalenoxyl (6OPO) is a phenalenyl‐based air‐stable neutral π radical with extensive spin delocalization and is a counter analogue of phenalenyl in terms of the topological symmetry of the spin density distribution. X‐ray crystal structure analyses showed that 8‐tert‐butyl‐ and 8‐(p‐XC6H4)‐6OPOs (X=I, Br) also form π dimers in the crystalline state. The π‐dimeric structure of 8‐tert‐butyl‐6OPO is seemingly similar to that of TBPLY even though its SOMO–SOMO overlap is small compared with that of TBPLY. The 8‐(p‐XC6H4) derivatives form slipped stacking π dimers in which the SOMO–SOMO overlaps are greater than in 8‐tert‐butyl‐6OPO, but still smaller than in TBPLY. The solid‐state electronic spectra of the 6OPO derivatives show much weaker intradimer charge‐transfer bands, and SQUID measurements for 8‐(p‐BrC6H4)‐6OPO show a weak antiferromagnetic exchange interaction in the π dimer. These results demonstrate that the control of the spin distribution patterns of the phenalenyl skeleton switches the mode of exchange interaction within the phenalenyl‐based π dimer. The formation of the relevant multicenter–two‐electron bonds is discussed.  相似文献   

18.
The synthesis, structure, and photophysical properties of novel BODIPY–Fischer alkoxy‐, thio‐, and aminocarbene dyads are reported. The BODIPY chromophore is directly attached to the carbene ligand by an ethylenic spacer, thus forming donor–bridge–acceptor π‐extended systems. The extension of the π‐conjugation is decisive in the equilibrium geometries of the dyads and is clearly reflected in the corresponding absorption and emission spectra. Whereas the BODIPY fragment is mainly isolated in aminocarbene complexes, it is fully conjugated in alkoxycarbene derivatives. The former thus exhibit the characteristic photophysical properties of BODIPY units, whereas complete suppression of the BODIPY fluorescence emission is observed in the latter, as a direct consequence of the strong electron‐accepting character of the (CO)5M?C moiety. As the π‐acceptor character of the metal–carbene group can be modified, the electronic properties of the conjugated BODIPY can be tuned. Density functional calculations have been carried out to gain insight into the photophysical properties.  相似文献   

19.
We report the first direct spectroscopic observation by electron paramagnetic resonance (EPR) spectroscopy of a triplet diradical that is formed in a thermally induced rotation around a main‐group π bond, that is, the Si?Si double bond of tetrakis(di‐tert‐butylmethylsilyl)disilene ( 1 ). The highly twisted ground‐state geometry of singlet 1 allows access to the perpendicular triplet diradical 2 at moderate temperatures of 350–410 K. DFT‐calculated zero‐field splitting (ZFS) parameters of 2 accurately reproduce the experimentally observed half‐field transition. Experiment and theory suggest a thermal equilibrium between 1 and 2 with a very low singlet–triplet energy gap of only 7.3 kcal mol?1.  相似文献   

20.
N‐Heterocyclic carbenes and their heavier homologues are, in part, stabilized by delocalization of the N lone pairs into the vacant p‐orbital at carbon (or a heavier Group 14 element center). These interactions are usually absent in the corresponding P‐substituted species, owing to the large barrier to planarization of phosphorus. However, judicious selection of the substituents at phosphorus has enabled the synthesis of a diphosphagermylene, [(Dipp)2P]2Ge, in which one of the P centers is planar (Dipp=2,6‐diisopropylphenyl). The planar nature of this P center and the correspondingly short P? Ge distance suggest a significant degree of P? Ge multiple bond character that is due to delocalization of the phosphorus lone pair into the vacant p‐orbital at germanium. DFT calculations support this proposition and NBO and AIM analyses are consistent with a Ge? P bond order greater than unity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号