首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of microwave‐assisted extraction and HPLC with photodiode array detection method for determination of six analgesic and anti‐inflammatory drugs from plasma and urine, is described, optimized, and validated. Several parameters affecting the extraction technique were optimized using experimental designs. A four‐factor (temperature, phosphate buffer pH 4.0 volume, extraction solvent volume, and time) hybrid experimental design was used for extraction optimization in plasma, and three‐factor (temperature, extraction solvent volume, and time) Doehlert design was chosen to extraction optimization in urine. The use of desirability functions revealed the optimal extraction conditions as follows: 67°C, 4 mL phosphate buffer pH 4.0, 12 mL of ethyl acetate and 9 min, for plasma and the same volume of buffer and ethyl acetate, 115°C and 4 min for urine. Limits of detection ranged from 4 to 45 ng/mL in plasma and from 8 to 85 ng/mL in urine. The reproducibility evaluated at two concentration levels was less than 6.5% for both specimens. The recoveries were from 89 to 99% for plasma and from 83 to 99% for urine. The proposed method was successfully applied in plasma and urine samples obtained from analgesic users.  相似文献   

2.
A sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for simultaneous determination of R‐bambuterol and its active metabolite R‐terbutaline in human plasma and urine was established. The inhibition for the biotransformation of R‐bambuterol in plasma was fully investigated. Plasma samples were prepared on ice and neostigmine metilsulfate added as a cholinesterase inhibitor immediately after sample collection. All samples were extracted with ethyl acetate and separated on a C18 column under gradient elution with a mobile phase consisting of methanol and water containing 5 mm ammonium acetate at a flow rate of 0.6 mL/min. The analytes were detected by an API 4000 tandem mass spectrometer with positive electrospray ionization in multiple reaction monitoring mode. The established method was highly sensitive with the lower limit of quantification (LLOQ) of 10.00 pg/mL for each analyte in plasma. In urine samples, the LLOQs were 20.00 and 500.0 pg/mL for R‐bambuterol and R‐terbutaline, respectively. The intra‐ and inter‐day precisions were <12.7 and <8.6% for plasma and urine, respectively. The analytical runtime within 6.0 min per sample made this method suitable for high‐throughput determination. The validated method has been successfully applied to the human pharmacokinetic study of R‐bambuterol involving 10 healthy volunteers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This report describes the development and validation of a chromatography/tandem mass spectrometry method for the quantitative determination of pravastatin and its metabolite (3α‐hydroxy pravastatin) in plasma and urine of pregnant patients under treatment with pravastatin, as part of a clinical trial. The method includes a one‐step sample preparation by liquid–liquid extraction. The extraction recovery of the analytes ranged between 93.8 and 99.5% in plasma. The lower limits of quantitation of the analytes in plasma samples were 0.106 ng/mL for pravastatin and 0.105 ng/mL for 3α‐hydroxy pravastatin, while in urine samples they were 19.7 ng/mL for pravastatin and 2.00 ng/mL for 3α‐hydroxy pravastatin. The relative deviation of this method was <10% for intra‐ and interday assays in plasma and urine samples, and the accuracy ranged between 97.2 and 106% in plasma, and between 98.2 and 105% in urine. The method described in this report was successfully utilized for determining the pharmacokinetics of pravastatin in pregnant patients enrolled in a pilot clinical trial for prevention of preeclampsia. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Dexmedetomidine (Dex), a highly selective α2‐adrenergic agonist, is used primarily for the sedation and anxiolysis of adults and children in the intensive care setting. A sensitive and selective assay for Dex in pediatric plasma was developed by employing ultra‐high‐performance liquid chromatography–tandem mass spectrometry with d4‐Dex as an internal standard. Dex was extracted from 0.1 mL of plasma by micro‐elution solid‐phase extraction. Separation was achieved with a Waters XBridge C18 column with a flow rate of 0.3 mL/min using a mobile phase comprising 5 mm ammonium acetate buffer with 0.03% formic acid in water and methanol–acetonitrile (50:50, v/v). The intra‐day precision (coefficient of variation) and accuracy for quality control samples ranged from 1.32 to 8.91% and from 92.8 to 108%, respectively. The inter‐day precision and accuracy ranged from 2.13 to 8.45% and from 97.0 to 104%, respectively. The analytical method showed excellent sensitivity using a small sample volume (0.1 mL) with a lower limit of quantitation of 5 pg/mL. This method is robust and has been successfully employed in a pharmacokinetic study of Dex in neonates and infants postoperative from cardiac surgery.  相似文献   

5.
A simple, rapid and sensitive LC‐UV method was developed and validated for the determination of paclitaxel (PTX) in rabbit plasma and tissues. A 2 mL aliquot of acetonitrile and 10 μL ammonium acetate (pH 5.0, 6 m ) as extraction agents were used to markedly increase the extraction recoveries and greatly reduce the endogenous substances. The separation was achieved on a C18 column at 30 °C using an acetonitrile–ammonium acetate buffer (pH 5.0, 0.02 m ; 55:45, v/v) at a flow rate of 1.0 mL/min; UV detection was used at 227 nm. Good linearity was obtained between 0.025 and 10,000 µg/mL for plasma and between 0.025–200,000 µg/g for tissue samples (r > 0.999). The limit of detection was 6 ng/mL in plasma, 8 ng/g in heart and 12.5 ng/g in other tissues. The limit of quantitation was 25 ng/mL in plasma and heart, 125 ng/g in other tissues. The intra‐ and inter‐day assays of precision and accuracy for all bio‐samples ranged from 1.38 to 9.60% and from 83.6 to 114.5%, respectively. The extraction recoveries ranged from 70.1 to 109.5%. Samples were stable during three freeze–thaw cycles or stored in a freezer at ?20 °C for 30 days. The assay method was successfully applied to a study of the pharmacokinetics and tissue distribution of novel PTX lung targeting liposomes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A rapid, sensitive and reliable quantitative method based on ultra‐high performance liquid chromatography coupled with Q‐Exactive Orbitrap tandem mass spectrometry was developed for simultaneous determination of berberine, berberrubine, palmatine, jatrorrhizine, columbamine, baicalin, baicalein and wogonin in rat plasma after oral administration with Yan‐Ke‐Ning‐Tablet (YKNT). After precipitation with acetonitrile, the plasma samples were separated on a reverse‐phase C18 column with 1 mm ammonium acetate containing 0.2% acetic acid–acetonitrile as mobile phase. Calibration curves showed good linearity (r > 0.9983) over the tested concentration ranges of 0.5–200 ng/mL for berberine, berberrubine, palmatine, jatrorrhizine and columbamine, and 1–300 ng/mL for baicalin, baicalein and wogonin. The precision (relative standard deviation) at three different concentration levels was <12.15% and the accuracy (relative error) ranged from ?8.24 to 10.85%. No matrix effects were observed with matrix effect value ranging from 89.23 to 107.68%. The extraction recovery was in the range of 82.34–92.31%. The validated assay was further successfully applied to the pharmacokinetic study of these components after oral administration of YKNT. The present study provides the pharmacokinetic profiles of major bioactive components found in YKNT, and provides valuable information regarding the chemical components that were absorbed into plasma, which will be helpful for understanding the therapeutic effects of YKNT.  相似文献   

7.
A highly sensitive and selective ultra‐performance liquid chromatography–tandem mass spectrometry method is described for the simultaneous determination of nomegestrol acetate (NOMAC), a highly selective progestogen, and estradiol (E2), a natural estrogen in human plasma. NOMAC was obtained from plasma by solid‐phase extraction, while E2 was first separated by liquid–liquid extraction with methyl tert‐butyl ether followed by derivatization with dansyl chloride. Deuterated internal standards, NOMAC‐d5 and E2‐d4 were used for better control of extraction conditions and ionization efficiency. The assay recovery of the analytes was within 90–99%. The analytes were separated on UPLC BEH C18 (50 × 2.1 mm, 1.7 μm) column using a mobile phase comprising of acetonitrile and 3.0 mm ammonium trifluoroacetate in water (80:20, v/v) with a resolution factor (Rs) of 3.21. The calibration curves were linear from 0.01 to 10.0 ng/mL for NOMAC and from 1.00 to 1000 pg/mL for E2, respectively. The intra‐ and inter‐batch precision was ≤5.8% and the accuracy of quality control samples ranged from 96.7 to 103.4% for both analytes. The practical applicability of the method is demonstrated by analyzing samples from 18 healthy postmenopausal women after oral administration of 2.5 mg nomegestrol acetate and 1.5 mg estradiol film‐coated tablets under fasting.  相似文献   

8.
Quantitation of Zn‐DTPA (zinc diethylenetriamene pentaacetate, a metal chelate) in complex biological matrix is extremely challenging on account of its special physiochemical properties. This study aimed to develop a robust and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method for determination of Zn‐DTPA in human plasma and urine. The purified samples were separated on Proteonavi (250 × 4.6 mm, 5 μm; Shiseido, Ginza, Tokyo, Japan) and a C18 guard column. The mobile phase consisted of methanol–2 mm ammonium formate (pH 6.3)–ammonia solution (50:50:0.015, v/v/v), flow rate 0.45 mL/min. The linear concentration ranges of the calibration curves for Zn‐DTPA were 1–100 μg/mL in plasma and 10–2000 μg/mL in urine. The intra‐ and inter‐day precisions for quality control (QC) samples were from 1.8 to 14.6% for Zn‐DTPA and the accuracies for QC samples were from −4.8 to 8.2%. This method was fully validated and successfully applied to the quantitation of Zn‐DTPA in plasma and urine samples of a healthy male volunteer after intravenous infusion administration of Zn‐DTPA. The result showed that the concentration of Zn‐DTPA in urine was about 20 times that in plasma, and Zn‐DTPA was completely (94.7%) excreted through urine in human.  相似文献   

9.
Cases of poisoning by p‐phenylenediamine (PPD) are detected sporadically. Recently an article on the development and validation of an LC–MS/MS method for the detection of PPD and its metabolites, N‐acetyl‐p‐phenylenediamine (MAPPD) and N,N‐diacetyl‐p‐phenylenediamine (DAPPD) in blood was published. In the current study this method for detection of these compounds was validated and applied to urine samples. The analytes were extracted from urine samples with methylene chloride and ammonium hydroxide as alkaline medium. Detection was performed by LC–MS/MS using electrospray positive ionization under multiple reaction‐monitoring mode. Calibration curves were linear in the range 5–2000 ng/mL for all analytes. Intra‐ and inter‐assay imprecisions were within 1.58–9.52 and 5.43–9.45%, respectively, for PPD, MAPPD and DAPPD. Inter‐assay accuracies were within ?7.43 and 7.36 for all compounds. The lower limit of quantification was 5 ng/mL for all analytes. The method, which complies with the validation criteria, was successfully applied to the analysis of PPD, MAPPD and DAPPD in human urine samples collected from clinical and postmortem cases.  相似文献   

10.
In the past we have reported significant cognitive deficits in mice receiving 5‐fluorouracil in combination with low‐dose methotrexate. To explain such interactions, a pharmacokinetic study was designed. A sensitive bio‐analytical method was therefore developed and validated for 5‐fluorouracil and methotrexate in mouse plasma, brain and urine with liquid chromatography coupled to a single quadrupole mass spectrometer. Chromatographic separation was accomplished by Agilent® Zorbax® SB‐C18 column, with isocratic elution (5 mM ammonium acetate and methanol, 70:30, %v/v) at a flow rate of 300 μL/min. The limit of quantitation for both drugs was 15.6 ng/mL (plasma and brain) and 78.1 ng/mL (urine), with interday and intraday precision and accuracy ≤15% and a total run time of 6 min. This bio‐analytical method was used for the pharmacokinetic characterization of 5‐fluorouracil and methotrexate in mouse plasma, brain and urine over a period of 24 h. This method allowed characterization of the brain concentrations of 5‐fluorouracil over a period of 24 h. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive and specific liquid chromatography tandem mass spectrometric method was developed and validated for the simultaneous determination of rosuvastatin (ROS) and N‐desmethyl rosuvastatin (NOR‐ROS) in human plasma using deuterium‐labeled internal standards. The plasma samples were prepared using liquid–liquid extraction with diethyl ether. Chromatographic separation was accomplished on an Xterra MS C18 column. The mobile phase consisted of a gradient mixture of 15 µmol/L ammonium acetate in water and in methanol, maintained at a flow rate of 0.4 mL/min. Mass spectrometric detection was carried out in negative electrospray ionization mode and monitored by quantification and qualification transitions for each analyte. Using 300 μL plasma samples, the lower limits of quantification of ROS and NOR‐ROS were 0.05 and 0.02 µg/L respectively. The linearity of ROS and NOR‐ROS ranged from 0.05 to 42 and 0.02 to 14 µg/L respectively. The relative standard deviations of ROS and NOR‐ROS were <13 and 9%, respectively, while the deviations from expected values were within ?4.7–9.8 and ?5.2–4.6%, respectively. The present method offered high sensitivity and was successfully applied to a 24 h pharmacokinetic study of ROS and NOR‐ROS in healthy subjects receiving a single dose of 10 mg ROS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid LC‐MS/MS method for quantification of an enaminone analog, E121 in mouse plasma using E118 as an internal standard (IS) has been developed and validated. The analyte was analyzed on C18 column using a mobile phase of acetonitrile/methanol/ammonium acetate/formic acid (60:20:20:0.025, v/v/v/v) at a flow rate of 0.25 mL/min. Quantitation was achieved using ESI+ interface, employing MRM mode at m/z 308>262 and 222>194 for E121 and IS, respectively. The calibration standards were linear over a range of 0.10–20 μg/mL (r2>0.99) with an LLOQ of 0.1 μg/mL (RSD%; 11.4% and bias%; 9.5%). Intra‐ and inter‐run precision of E121 assay ranged from 3.7 to 10.9% with accuracy (bias) that varied between ?10.0 and 12.0%, demonstrating good precision and accuracy. Recoveries of E121 and the IS from plasma were above 80%. Stability of E121 in plasma showed that the analyte was stable under various conditions. The matrix effect study showed a lack of effect. The applicability of the developed method was demonstrated by measuring E121 in mouse plasma samples following intraperitoneal administration of various doses ranging from 10 to 100 mg/kg and this study demonstrates that E121 exhibits linear kinetics in the dose range studied.  相似文献   

13.
A simple high‐performance liquid chromatography method for the determination of cefovecin in small volume plasma has been developed. Following solid‐phase extraction using Oasis HLB cartridges, samples were separated by reverse‐phase high‐performance liquid chromatography on an XBridge C8 (3.5 µm) 4.6 × 250 mm column and quantified using ultraviolet detection at 280 nm. The mobile phase was a mixture of 10 mm ammonium acetate (pH 3.5) and acetonitrile (89:11), with a flow rate of 0.85 mL/min. The standard curve ranged from 0.1 to 200 µg/mL. Intra‐ and Inter‐assay variability for cefovecin was <10%, and the average recovery was >90%. The lower limit of quantitation was 0.1 µg/mL. This method was successfully applied to the analysis of cefovecin samples at our institution. This is also the first fully validated method with an internal standard that does not use mass spectrometry. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A specific and robust LC–MS/MS method was developed and validated for the quantitative determination of GDC‐3280 in human plasma and urine. The nonspecific binding associated with urine samples was overcome by the addition of CHAPS. The sample volume was 25 μL for either matrix, and supported liquid extraction was employed for analyte extraction. d6‐GDC‐3280 was used as the internal standard. Linear standard curves (R2 > 0.9956) were established from 5.00 to 5000 ng/mL in both matrices with quantitation extended to 50,000 ng/mL through dilution. In plasma matrix, the precision (RSD) ranged from 1.5 to 9.9% (intra‐run) and from 2.4 to 7.2% (inter‐run); the accuracy (RE) ranged from 96.1 to 107% (intra‐run) and from 96.7 to 104% (inter‐run). Similarly, in urine the precision was 1.5–6.2% (intra‐run) and 1.9–6.1% (inter‐run); the accuracy was 83.1–99.3% (intra‐run) and 87.1–98.3% (inter‐run). Good recovery (>94%) and negligible matrix effect were achieved in both matrices. Long‐term matrix stability was established for at least 703 days in plasma and 477 days in urine. Bench‐top stability of 25 h and five freeze–thaw cycles were also confirmed in both matrices. The method was successfully implemented in GDC‐3280's first‐in‐human trial for assessing its pharmacokinetic profiles.  相似文献   

15.
A sensitive and reliable LC–MS/MS method was developed and validated for simultaneous quantification of the major components of Huangqi–Honghua extact in rat plasma, including hydroxysafflor yellow A (HSYA), astragaloside IV (ASIV), calycosin‐7‐O‐β‐d ‐glucoside (CAG), calycosin, calycosin‐3′‐O‐glucuronide (C‐3′‐G) and calycosin‐3′‐O‐sulfate (C‐3′‐S). After extraction by protein precipitation with acetonitrile and methanol from plasma, the analytes were separated on a Hypersil BDS C18 column by gradient elution with acetonitrile and 5 mM ammonium acetate. The detection was carried out on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source switched between negative and positive modes. HSYA was monitored in negative ionization mode from 0 to 4.9 min, and ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S were determined in positive ionization mode from 4.9 to 10 min. The lower limits of quantification of the analytes were 6.25 ng/mL for HSYA, 0.781 ng/mL for CAG and 1.56 ng/mL for ASIV and calycosin. The intra‐ and inter‐assay precision (RSD) values were within 13.43%, and accuracy (RE) ranged from ?8.75 to 9.92%. The validated method was then applied to the pharmacokinetic study of HSYA, ASIV, CAG, calycosin, C‐3′‐G and C‐3′‐S in rat after an oral administration of Huangqi–Honghua extract.  相似文献   

16.
A simple, sensitive and reproducible isocratic reversed‐phase (C18) high‐performance liquid chromatography (HPLC) method was developed to determine 7‐O‐succinyl macrolactin A (SMA) in rat plasma and urine samples using UV detector set at 230 nm. Lamotrigine was used as internal standards (IS) to ensure the precision and accuracy of the method. The retention times of SMA and IS for the plasma sample were 9.2 and 4.4 min, respectively, and those for the urine samples were 7.9 and 4.3 min, respectively. The intra‐ and inter‐day variations of the analytical responses, expressed in terms of relative standard deviation, were less than 14.9%. The accuracy, in terms of average analytical recovery, ranged from 90.4 to 119%. The lower limits of quantification of SMA in rat plasma and urine samples were 0.02 and 0.1 µg/mL, respectively. This method is applicable for the pharmacokinetic studies of SMA in rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A highly sensitive and selective method based on ultra‐high‐performance liquid chromatography combined with linear ion trap–Orbitrap tandem mass spectrometry (UHPLC–LTQ–Orbitrap–MS) has been developed and validated for the determination of scopoletin in dog plasma. The analyte was extracted from plasma samples using acetonitrile and separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, 1.7 μm) with 0.05% ammonium hydroxide and acetonitrile as mobile phase. The developed method was linear over the concentration range of 1–500 ng/mL, with a correlation coefficient >0.9988. The intra‐ and inter‐day precisions (RSD) were <8.93% while the accuracy (RE) ranged from ?6.50 to 8.12%. Extraction recovery, matrix effect and stability for dog plasma samples were within the required limits. The validated method has been successfully applied to investigate the pharmacokinetics and metabolism of scopoletin in dog plasma after intravenous (1 mg/kg) and oral (10, 25, 50 mg/kg) administration. The results revealed that (a) scopoletin showed short elimination half‐life in dog; (b) its oral bioavailability was low (within the range of 5.69–7.08%); (c) scopoletin showed dose‐independent pharmacokinetic profiles in dog plasma over the dose range of 10–50 mg/kg; and (d) glucuronidation was the predominant metabolic pathway in dog.  相似文献   

18.
TAK‐875 is a selective partial agonist of human GPR40 receptor, which was unexpectedly terminated at phase III clinical trials owing to its severe hepatotoxicity. The purpose of this study was to investigate the pharmacokinetics of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS). Plasma samples were extracted with ethyl acetate and chromatographic separations were achieved on a C18 column with water and acetonitrile containing 0.05% ammonium hydroxide as mobile phase. The sample was detected in selected reaction monitoring mode with precursor‐to‐product ion transitions being m/z 523.2 → 148.1, m/z 699.3 → 113.1 and m/z 425.2 → 113.1 for TAK‐875, TAK‐875‐acylglucuronide and IS, respectively. The assay showed good linearity over the tested concentration ranges (r > 0.9993), with the LLOQ being 0.5 ng/mL for both analytes. The extraction recovery was >78.45% and no obvious matrix effect was detected. The highly sensitive LC–MS/MS method has been further applied for the pharmacokinetic study of TAK‐875 and its toxic metabolite TAK‐875‐acylglucuronide in rat plasma. Pharmacokinetics results revealed that oral bioavailability of TAK‐875 was 86.85%. The in vivo exposures of TAK‐875‐acylglucuronide in terms of AUC0–t were 17.54 and 22.29% of that of TAK‐875 after intravenous and oral administration, respectively.  相似文献   

19.
A heart-cut two-dimensional high-performance liquid chromatography method for enantiomeric determination of salbutamol, salmeterol and atenolol in urine is presented. It involves the use of two separations in a liquid chromatography?Cliquid chromatography achiral?Cchiral coupling. Target compounds were previously separated in a primary column (Kinetex? HILIC, 2.6???m, 150?×?2.1?mm I.D.) with a mixture of MeOH:ACN:ammonium acetate buffer (5?mM, pH 6) 90:5:5 (v/v/v) as mobile phase at a flow rate of 0.40?mL?min?1. Enantiomeric separation was carried out by transferring peak of each compound through a switching valve to a vancomycin chiral column (Chirobiotic? V, 2.6???m, 150?×?2.1?mm I.D.) using MeOH:ammonium acetate buffer (2?mM, pH 4) 97:3 (v/v) as mobile phase at a flow rate of 0.50?mL?min?1. Ultraviolet detection was done at 227?nm. The method was applied to determine target analytes in urine samples after enzymatic hydrolysis with ??-glucuronidase from Helix pomatia, followed by a solid-phase extraction procedure using Isolute? HCX mixed-mode cartridges. Extraction recoveries ranged from 82 to 90?% in urine samples. Detection limits were 0.091?C0.095???g for each enantiomer of atenolol and between 0.058 and 0.076 and 0.18?C0.14???g for enantiomers of salbutamol and salmeterol, respectively (3?mL of urine). Linearity ranges were between 0.5 and 10???g?mL?1. Intraday and interday reproducibilities of enantiomeric ratio and enantiomeric fraction, expressed as relative standard deviation, were between 1.9 and 9.0?%. The optimized method was successfully applied to the analysis of urine samples obtained from excretion studies in volunteers and in freeze-dried urine samples, containing urinary components with MW?<?10,000 and components with MW?>?10,000, spiked with different amounts of studied drugs.  相似文献   

20.
A novel ultra‐high‐pressure liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of the dopamine receptor agonist rotigotine in human plasma. Following liquid–liquid extraction with tert‐ butyl methyl ether from 500 μL plasma, the chromatographic analysis was performed on a Gemini NX3 column using 5 mm pH 5.0 ammonium acetate–5 mm ammonium acetate in methanol as binary gradient mobile phase, at a flow rate of 0.3 mL/min. The MS/MS ion transitions were 316.00 → 147.00 for rotigotine and 256.10 → 211.00 for the internal standard (lamotrigine). The lower limit of quantitation was 50 pg/mL and the linearity was determined from 50 to 2500 pg/mL. The mean recovery was 96.9%. Both intra‐ and interassay imprecision and inaccuracy were ≤15% at all quality control concentrations. The method was successfully applied to measure morning trough plasma rotigotine concentrations in a series of patients with Parkinson's disease on chronic treatment. The present study describes the first fully validated method for rotigotine determination in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号