首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two porous hydrogen‐bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra‐high proton conduction values (σ) 0.75× 10?2 S cm?1 and 1.8×10?2 S cm?1 under humidified conditions. Also, they have very low activation energy values and the highest proton conductivity at ambient conditions (low humidity and at moderate temperature) among porous crystalline materials, such as metal–organic frameworks (MOFs) and covalent organic frameworks (COFs). These values are not only comparable to the conventionally used proton exchange membranes, such as Nafion used in fuel cell technologies, but is also the highest value reported in organic‐based porous architectures. Notably, this report inaugurates the usage of crystalline hydrogen‐bonded porous organic frameworks as solid‐state proton conducting materials.  相似文献   

2.
Self‐assembled crystalline porous organic salts (CPOSs) formed by an acid–base combination and with one‐dimensional polar channels containing water molecules have been synthesized. The water content in the channels of the porous salts plays an important role in the proton conduction performance of the materials. The porous salts described in this study feature high proton conductivity at ambient conditions and can reach as high as 2.2×10−2 S cm−1 at 333 K and under high humid conditions. This is among the best conductivity values reported to date for porous materials, for example, metal–organic frameworks and hydrogen‐bonded organic frameworks. These materials exhibiting permanent porosity represent a group of porous materials and may find interesting applications in proton‐exchange membrane fuel cells.  相似文献   

3.
Novel catalytic ceramic-based materials that simultaneously possess high surface area and adsorptive capacity, with proton and/or electron conducting properties, were developed for electrocatalytic and waste-stream treatment processes. These novel inorganic proton conducting membranes were produced by incorporating inorganic low-temperature proton conductors such as polymeric phosphates of polyvalent metals into the porous structure of different active or inert substrates such as ceramics (in the form of tubes, discs and paper), zeolites or carbon cloth. Electrocatalytic activity was obtained by coating electroconductive surface layers that acted both as electrode and catalyst. Bench scale and pilot scale test reactors were built and commissioned. Comparison with existing technologies was undertaken for several applications. Such high surface-area inorganic materials that support nanoscale metal clusters are being tested as electrode materials in anodic oxidation, inorganic fuel cells and hydrogen generation.  相似文献   

4.
The development of solid‐state proton‐conducting materials with high conductivity that operate under both anhydrous and humidified conditions is currently of great interest in fuel‐cell technology. A 3D metal–organic framework (MOF) with acid–base pairs in its coordination space that efficiently conducts protons under both anhydrous and humid conditions has now been developed. The anhydrous proton conductivity for this MOF is among the highest values that have been reported for MOF materials, whereas its water‐assisted proton conductivity is comparable to that of the organic polymer Nafion, which is currently used for practical applications. Unlike other MOFs, which conduct protons either under anhydrous or humid conditions, this compound should represent a considerable advance in the development of efficient solid‐state proton‐conducting materials that work under both anhydrous and humid conditions.  相似文献   

5.
The development of water‐mediated proton‐conducting materials operating above 100 °C remains challenging because the extended structures of existing materials usually deteriorate at high temperatures. A new triazolyl phosphonate metal–organic framework (MOF) [La3 L 4(H2O)6]Cl ? x H2O ( 1 , L 2?=4‐(4H‐1,2,4‐triazol‐4‐yl)phenyl phosphonate) with highly hydrophilic 1D channels was synthesized hydrothermally. Compound 1 is an example of a phosphonate MOF with large regular pores with 1.9 nm in diameter. It forms a water‐stable, porous structure that can be reversibly hydrated and dehydrated. The proton‐conducting properties of 1 were investigated by impedance spectroscopy. Magic‐angle spinning (MAS) and pulse field gradient (PFG) NMR spectroscopies confirm the dynamic nature of the incorporated water molecules. The diffusivities, determined by PFG NMR and IR microscopy, were found to be close to that of liquid water. This porous framework accomplishes the challenges of water stability and proton conduction even at 110 °C. The conductivity in 1 is proposed to occur by the vehicle mechanism.  相似文献   

6.
Water behavior studies were performed in porous ceramic media based on proton conducting yttrium-doped barium cerate BaCe0.85Y0.15O3-α (BCY15), which is a component of a new high-temperature dual membrane fuel cell (dmFC) design. Complex permittivity measurements were carried out on porous samples at room temperature. A new phenomenon was observed during wetting—a gigantic enhancement of the real component of the capacitance at lower frequencies. A possible explanation is the formation of semi-liquid layer with dipole structure on the pores walls, which is supposed to be organized also at operating temperatures. Since the electrochemically active volumetric layer facilitates the water formation, it should improve the operation of the dmFC by decreasing its resistance, which is experimentally confirmed. This phenomenon can be of importance also for classical proton conducting solid oxide fuel cells, as well as for operation in electrolyzer mode.  相似文献   

7.
The limited long‐term hydrolytic stability of rapidly emerging 3D‐extended framework materials (MOFs, COFs, MOPs, etc.) is still one of major barriers for their practical applications as new solid‐state electrolytes in fuel cells. To obtain hydrolytically stable materials, two H2PO4?‐exchanged 3D inorganic cationic extended frameworks (CEFs) were successfully prepared by a facile anion‐exchange method. Both anion‐exchanged CEFs (YbO(OH)P and NDTBP) show significantly enhanced proton conductivity when compared with the original materials (YbO(OH)Cl and NDTB) with an increase of up to four orders‐of‐magnitude, reaching 2.36×10?3 and 1.96×10?2 S cm?1 at 98 % RH and 85 °C for YbO(OH)P and NDTBP, respectively. These values are comparable to the most efficient proton‐conducting MOFs. In addition, these two anion‐exchanged materials are stable in boiling water, which originates from the strong electrostatic interaction between the H2PO4? anion and the cationic host framework, showing a clear advance over all the acid‐impregnated materials (H2SO4@MIL‐101, H3PO4@MIL‐101, and H3PO4@Tp‐Azo) as practical solid‐state fuel‐cell electrolytes. This work offers a new general and efficient approach to functionalize 3D‐extended frameworks through an anion‐exchange process and achieves water‐stability with ultra‐high proton conductivity above 10?2 S cm?1.  相似文献   

8.
Poor mechanical stability of the polymer electrolyte membranes remains one of the bottlenecks towards improving the performance of the proton exchange membrane (PEM) fuel cells. The present work proposes a unique way to utilize crystalline covalent organic frameworks (COFs) as a self‐standing, highly flexible membrane to further boost the mechanical stability of the material without compromising its innate structural characteristics. The as‐synthesized p‐toluene sulfonic acid loaded COF membranes (COFMs) show the highest proton conductivity (as high as 7.8×10−2 S cm−1) amongst all crystalline porous organic polymeric materials reported to date, and were tested under real PEM operating conditions to ascertain their practical utilization as proton exchange membranes. Attainment of 24 mW cm−2 power density, which is the highest among COFs and MOFs, highlights the possibility of using a COF membrane over the other state‐of‐the‐art crystalline porous polymeric materials reported to date.  相似文献   

9.
Effective proton conducting sites and establishing proton channels are two critical factors in developing high‐performance proton exchange membranes. This study first establishes a strategy in designing effective proton conducting channels for Nafion by using solution blowing of sulfonated polyethersulfone (SPES) nanofibers containing CC3, which is an emerging porous organic cage that possesses the advantages of dissolvable organic solvents and high proton conduction from its interconnected three‐dimensional pore structure. Our strategy results in SPES nanofiber networks with CC3 uniformly involved in and composite membranes with Nafion‐filled interfiber voids. Benefiting from such structural features, the composite membrane exhibits high proton conductivity (0.315 S cm?1 at 80°C and 100% RH), low methanol permeability (0.69 × 10?7 cm2 S?1), excellent water absorption, thermal and dimensional stability, and single‐cell performance. This study provides not only a valuable reference for the application of CC3 but also a new idea for establishment of proton transfer channels.  相似文献   

10.
The direct preparation of proton conducting poly(vinyl chloride) (PVC) graft copolymer electrolyte membranes using atom transfer radical polymerization (ATRP) is demonstrated. Here, direct initiation of the secondary chlorines of PVC facilitates grafting of a sulfonated monomer. A series of proton conducting graft copolymer electrolyte membranes, i.e. poly(vinyl chloride)‐g‐poly(styrene sulfonic acid) (PVC‐g‐PSSA) were prepared by ATRP using direct initiation of the secondary chlorines of PVC. The successful syntheses of graft copolymers were confirmed by 1H‐NMR and FT‐IR spectroscopy. The images of transmission electron microscopy (TEM) presented the well‐defined microphase‐separated structure of the graft copolymer electrolyte membranes. All the properties of ion exchange capacity (IEC), water uptake, and proton conductivity for the membranes continuously increased with increasing PSSA contents. The characterization of the membranes by thermal gravimetric analysis (TGA) also demonstrated their high thermal stability up to 200°C. The membranes were further crosslinked using UV irradiation after converting chlorine atoms to azide groups, as revealed by FT‐IR spectroscopy. After crosslinking, water uptake significantly decreased from 207% to 84% and the tensile strength increased from 45.2 to 71.5 MPa with a marginal change of proton conductivity from 0.093 to 0.083 S cm?1, which indicates that the crosslinked PVC‐g‐PSSA membranes are promising candidates for proton conducting materials for fuel cell applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Perfluorosulfonic acid ionomers have been widely used as proton‐conducting materials in polymer‐electrolyte membrane fuel cells and their dispersions in polar solvents are used to prepare proton‐conducting membranes as well as catalyst layers. While it has been known that the dispersed particles become monodisperse after heating to 230 °C or above, their size and shape have not been fully characterized yet. Cryogenic transmission electron microscopy images and small‐angle X‐ray scattering profiles of the dilute aqueous dispersions before and after heating to 240 °C have clearly shown that rod‐like particles became significantly shorter cylinders without changing their radii. Particle length distributions were lognormal and average molar mass and dispersity after heating to 240 °C were consistent with the values from size exclusion chromatography. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 813–818  相似文献   

12.
This study introduces a new production method to use as a porous silicon-based proton exchange membrane for μDMFCs. In this respect, EIS, fuel crossover test, and fuel cell performance test at the μDMFC sample cell are performed at room temperature on a porous silicon-based membrane that was produced for passive mode μDMFC as a proton exchange membrane. The reason for performing the fuel crossover test is to ensure the silicon opened pores along the silicon wafer and to examine the fuel permeability of the membrane. The fuel crossover test shows that the fuel cell provides energy for about 60 min with a 50 mL fuel. EIS reveals proton permeability of proton exchange membrane. The calculated value of the conductivity of the membrane is 0.0016 S/cm. OCV of the system is 0.4V, whereas values (with highest power density is 0.1 mW/cm²and with the highest current density is 0.39 mA/cm²) are low. However, porous silicon is not a natural proton conductor. Hence, these values can be increased by different ways such as porous silicon functionalized, or serial connection of fuel cells. On the other hand, the value of OCV is consistent with the previous studies. In sum, this study presents a simple, cost-effective, and short time-consuming method for the production of porous silicon as proton-conducting membrane behavior.  相似文献   

13.
A porous metal–organic framework (MOF), [Ni2(dobdc)(H2O)2]?6 H2O (Ni2(dobdc) or Ni‐MOF‐74; dobdc4?=2,5‐dioxido‐1,4‐benzenedicarboxylate) with hexagonal channels was synthesized using a microwave‐assisted solvothermal reaction. Soaking Ni2(dobdc) in sulfuric acid solutions at different pH values afforded new proton‐conducting frameworks, H+@Ni2(dobdc). At pH 1.8, the acidified MOF shows proton conductivity of 2.2×10?2 S cm?1 at 80 °C and 95 % relative humidity (RH), approaching the highest values reported for MOFs. Proton conduction occurs via the Grotthuss mechanism with a significantly low activation energy as compared to other proton‐conducting MOFs. Protonated water clusters within the pores of H+@Ni2(dobdc) play an important role in the conduction process.  相似文献   

14.
基于杂多酸的固体高质子导体*   总被引:1,自引:0,他引:1  
刘镇  吴庆银  宋小莉  马赛 《化学进展》2009,21(5):982-989
杂多酸固体高质子导体在燃料电池、传感器和电显色装置等方面具有潜在的应用前景。本文概述了杂多酸的质子导电性,归纳了其质子导电性的一些规律,以表格形式列举了各类杂多酸的电导率。将不同质量分数的杂多酸固载在各类固体基质上,可以对杂多酸质子导电材料改性以便于工业中实际应用。这些杂化材料兼有杂多酸的高质子导电性以及基质的稳定性与机械延展性。本文综述了近几年来新型杂多酸,杂多酸-无机基质复合材料,杂多酸-有机基质复合材料,杂多酸-多元基复合材料的质子电导率、稳定性、结构形态等等方面的研究进展,详细介绍了杂多酸在质子交换膜燃料电池中的应用,并对杂多酸固体高质子导体的应用前景进行了展望。  相似文献   

15.
Herein we present the synthesis and characterization of new phosphonate‐, bisphosphonate‐ and hydroxybisphosphonatebenzimidazole derivatives substituted at the N‐1 position and new regioisomers phosphonate‐, bisphosphonate‐, and hydroxybisphosphonatebenzotriazole derivatives substituted at N‐1 or N‐2 positions. The compounds were characterized by NMR and IR spectroscopies, and mass spectrometry (low and high resolution) allowing the assignment of their structure, including the identification of regioisomers. These new azole monomers will be precursors for a mesoporous silica host to produce novel membrane materials with high proton conductivity for intermediate temperature proton exchange membrane fuel cells.  相似文献   

16.
Systematic investigation on synergetic effects of geometry, length, denticity, and asymmetry of donors was performed through the formation of a series of uncommon PdII aggregates by employing the donor in a multicomponent self‐assembly of a cis‐blocked 90° PdII acceptor and a tetratopic donor. Some of these assemblies represent the first examples of these types of structures, and their formation is not anticipated by only taking the geometry of the donor and the acceptor building units into account. Analysis of the crystal packing of the X‐ray structure revealed several H bonds between the counteranions (NO3?) and water molecules (O?H???O?N). Moreover, H‐bonded 3D‐networks of water are present in the molecular pockets, which show water‐adsorption properties with some variation in water affinity. Interestingly, these complexes exhibit proton conductivity (1.87×10?5–6.52×10?4 Scm?1) at 296 K and low relative humidity (ca. 46 %) with activation energies of 0.29–0.46 eV. Moreover, the conductivities further increase with the enhancement of humidity. The ability of these assemblies to exhibit proton‐conducting properties under low‐humidity conditions makes these materials highly appealing as electrolytes in batteries and in fuel‐cell applications.  相似文献   

17.
Heterocycles' aggregates show rather good proton conductivity. In particular, condensed structures formed by imidazole rings that are held together by polymeric chains have attracted some interest as possible candidate materials for fuel cell membranes. However, the details of the proton diffusion process could not be resolved by means of experimental measurements because of the fast rearrangement of the structure after each proton exchange. In this work, we report in detail the results of ab initio molecular dynamics calculations, which were briefly presented in a previous Letter [M. Iannuzzi and M. Parrinello, Phys. Rev. Lett. 93, 025901 (2004)]. The conformational changes associated with the diffusion of protons in model crystalline structures containing chains of imidazole rings are described in the framework of an atomistic approach. In particular, the bonding pattern characterizing the structure of imidazole-2-ethylene-oxide doped by an excess proton is also studied through the calculation of the 1H NMR chemical shifts. The unresolved resonances appearing in the experimental spectra could be associated with specific structural features, in connection with the fluctuating hydrogen bonding. The analysis of the distortions that induce or are induced by the mobility of the protons offers some new hints for the engineering of new proton conducting materials.  相似文献   

18.
《先进技术聚合物》2018,29(4):1219-1226
The preparation and characterization of the nanocomposite polyelectrolyte membranes, based on Nafion, sulfonated multi‐walled carbon nanotubes (MWCNT‐SO3H) and imidazole modified multi‐walled carbon nanotubes (MWCNT‐Im), for direct methanol fuel cell applications is described. The results showed that the modification of multi‐walled carbon nanotubes (MWCNT) with proton‐conducting groups (sulfonic acid groups or imidazole groups) could enhance the proton conductivity of the nanocomposite membranes in comparison to Nafion 117. Regarding the interactions between the protonated imidazole groups, grafted on the surface of MWCNT, and the negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of the Nafion and MWCNT‐Im, which result in both lower methanol permeability and higher proton conductivity. The physical characteristics of these manufactured nanocomposite membranes were investigated by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, water uptake, methanol permeability, and ion exchange capacity, as well as proton conductivity. The Nafion/MWCNT‐Im membranes showed the higher proton conductivity, lower methanol permeability, and, as a consequence, a higher selectivity parameter in comparison to the neat Nafion or Nafion membrane containing MWCNT‐SO3H or ─OH functionalized multi‐walled carbon nanotubes (MWCNT‐OH) membranes. The obtained results indicated that the Nafion/MWCNT‐Im membranes could be used as efficient polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

19.
A new approach to the facile large-scale fabrication of robust silicon membranes with artificial proton conducting channels is presented. Ordered two-dimensional macroporous silicon was rendered proton conducting by growing a thick uniform polyelectrolyte brush using surface-initiated atom transfer radical polymerization throughout the porous matrix. The fabricated silicon-poly(sulfopropyl methacrylate) hybrid membranes were evaluated for their proton conductivity, ion exchange capacity, and water uptake. With proton conductivities in the range of 10(-2) S/cm, these proof-of-concept experiments highlight a promising alternative for producing tailorable proton conducting membranes. This approach constitutes a benchmark for the preparation and study of model systems and, in addition, for the large-scale fabrication of membranes suitable for a wide range of technological applications.  相似文献   

20.
Exploring new materials to manufacture proton-conducting membranes(PEMs) for fuel cells is highly significant. In this work, we fabricated two robust and highly crystalline porous covalent organic frameworks(COFs) via a stepwise synthesis strategy. The synthesized COF structures are integrated into high-density azo and amino groups, which allow to anchor acids for accelerating proton conduction. Moreover, the COFs exhibit good chemical stability and high hydrophilicity. These features make them potential platforms for proton conduction applications. Upon loaded with H3PO4, the COFs(H3PO4@COFs) deliver a high proton conductivity of 3.15×10‒2 S/cm at 353 K under 95% relative humidity(RH). Furthermore, membrane electrode assemblies are fabricated using H3PO4@COF-26 as the solid electrolyte for a single fuel cell outputting a maximum power density of 18 mW/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号