首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel, specially prepared, tetrahydropyran‐based γ‐amino alcohols (S)‐2‐(aminomethyl)‐3‐hydroxy‐6‐ethoxy(phenoxy)‐tetrahydropyrans ( I ) (amino = n‐Bu2N, piperidinyl, pyrrolidinyl, azetidinyl) were tested as catalysts in the asymmetric addition of Et2Zn and n‐Bu2Zn to (hetero)aromatic aldehydes. In most cases the phenoxy derivatives of I acted more enantioselectively than the ethoxy ones. The dibutylamino derivaties showed the least enantioselectivity; the pyrrolidinyl derivatives were more active as catalysts than piperidinyl and azetidinyl compounds. The highest enantioselectivity was observed in the addition of Et2Zn to benzaldehyde in the presence of (S)‐2‐(N‐pyrrolidinylmethyl)‐3‐hydroxy‐6‐phenoxytetrahydropyran. The corresponding alcohol was prepared with 72% ee (R‐configuration). The addition of dibutylzinc proceeded slowly and less selectively. The alkylation of (hetero)aromatic aldehydes with Et2Zn and n‐Bu2Zn was also studied in the presence of the known optical inductor (1S,2R)‐N,N‐dibutylnorephedrine. Some chiral aromatic secondary alcohols were synthesized in high chemical yields and up to 93% ee enantioselectivity. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A robust heterogeneous self‐supported chiral titanium cluster (SCTC) catalyst and its application in the enantioselective imine‐cyanation/Strecker reaction is described under batch and continuous processes. One of the major hurdles in the asymmetric Strecker reaction is the lack of availability of efficient and reusable heterogeneous catalysts that work at room temperature. We exploited the readily hydrolyzable nature of titanium alkoxide to synthesize a self‐supported chiral titanium cluster (SCTC) catalyst by the controlled hydrolysis of a preformed chiral titanium‐alkoxide complex. The isolated SCTC catalysts were remarkably stable and showed up to 98 % enantioselectivity (ee) with complete conversion of the imine within 2 h for a wide variety of imines at room temperature. The heterogeneous catalysts were recyclable more than 10 times without any loss in activity or selectivity. The robustness, high performance, and recyclability of the catalyst enabled it to be used in a packed‐bed reactor to carry out the cyanation under continuous flow. Up to 97 % ee and quantitative conversion with a throughput of 45 mg h?1 were achieved under optimized flow conditions at room temperature in the case of benzhydryl imine. Furthermore, a three‐component Strecker reaction was performed under continuous flow by using the corresponding aldehydes and amines instead of the preformed imines. A good product distribution was obtained for the formation of amino nitriles with ee values of up to 98 %. Synthetically useful ee values were also obtained for challenging α‐branched aliphatic aldehyde by using the three‐component continuous Strecker reaction.  相似文献   

3.
A new titanium(IV) complex has been developed for the effective enantioselective alkynylation of phenylacetylene addition to aldehydes. The titanium(IV) complex was readily prepared in situ from (R)‐C‐(7,7‐dimethyl‐2‐oxo‐bicyclo[2.2.1]hept‐1‐yl)‐(1R,2S)‐N‐(2‐hydroxy‐1,2‐diphenyl‐ethyl)‐methanesulfonamide (1h) and tetraisopropyl titanate [Ti(i‐OPr)4]. A variety of aromatic aldehydes and α,β‐unsaturated aldehydes were found to be suitable substrates in the presence of the camphor sulfonylated amino alcohol titanium(IV) complex [10 mol% 1h, 40 mol% Ti(i‐OPr)4]. The desired propargylic alcohols were afforded with high isolated yields (up to 90%) and moderate enantioselectivities (up to 65% ee) under mild conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Synthesis of enantiomerically enriched α‐hydroxy amides and β‐amino alcohols has been accomplished by enantioselective reduction of α‐keto amides with hydrosilanes. A series of α‐keto amides were reduced in the presence of chiral CuII/(S)‐DTBM‐SEGPHOS catalyst to give the corresponding optically active α‐hydroxy amides with excellent enantioselectivities by using (EtO)3SiH as a reducing agent. Furthermore, a one‐pot complete reduction of both ketone and amide groups of α‐keto amides has been achieved using the same chiral copper catalyst followed by tetra‐n‐butylammonium fluoride (TBAF) catalyst in presence of (EtO)3SiH to afford the corresponding chiral β‐amino alcohol derivatives.  相似文献   

5.
A series of novel C2‐symmetric chiral pyridine β‐amino alcohol ligands have been synthesized from 2,6‐pyridine dicarboxaldehyde, m‐phthalaldehyde and chiral β‐amino alcohols through a two‐step reaction. All their structures were characterized by 1H NMR, 13C NMR and IR. Their enantioselective induction behaviors were examined under different conditions such as the structure of the ligands, reaction temperature, solvent, reaction time and catalytic amount. The results show that the corresponding chiral secondary alcohols can be obtained with high yields and moderate to good enantiomeric excess. The best result, up to 89% ee, was obtained when the ligand 3c (2S,2′R)‐2,2′‐((pyridine‐2,6‐diylbis(methylene))bisazanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was used in toluene at room temperature. The ligand 3g (2S,2′R)‐2,2′‐((1,3‐phenylenebis(methylene))bis(azanediyl))bis(4‐methyl‐1,1‐diphenylpentan‐1‐ol) was prepared in which the pyridine ring was replaced by the benzene ring compared to 3c in order to illustrate the unique role of the N atom in the pyridine ring in the inductive reaction. The results indicate that the coordination of the N atom of the pyridine ring is essential in the asymmetric induction reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A number of novel chiral diamines 3 , (1R,2R)‐N‐monoalkylcyclohexane‐1,2‐diamines, were designed and synthesized from trans‐cyclohexane‐1,2‐diamine and applied to the catalytic asymmetric Henry reaction of benzaldehyde and nitromethane to provide β‐nitroalcohol in high yield (up to 99%) and good enantiomeric excess (up to 89%). By using ligand (1R,2R)‐N1‐(4‐methylpentan‐2‐yl)cyclohexane‐1,2‐diamine ( 3g ), the reaction was optimized in terms of the metal ion, temperature, solvent and base. Further experiments indicated that the complex, 3g –Cu(OAc)2, was an efficient catalyst in the asymmetric Henry reaction between different aldehydes and nitromethane, and the desired products have been obtained with high chemical yields (up to 99%) and high enantiomeric excess (up to 93%). The optimized catalyst promoted the diastereoselective Henry reaction of various aldehyde substrates and nitroalkane, which gave the corresponding anti‐selective adduct with up to 99% yield and 83:17 anti/syn selectivity. Upon scaling up to gram quantities, the β‐nitroalcohol was obtained in good yield (96%) with excellent selectivities (93% ee). The chiral induction mechanism was tentatively explained on the basis of a previously proposed transition‐state model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
A new catalytic system has been developed for the asymmetric hydrogenation of β‐secondary‐amino ketones using a highly efficient P‐chiral bisphosphine–rhodium complex in combination with ZnCl2 as the activator of the catalyst. The chiral γ‐secondary‐amino alcohols were obtained in 90–94 % yields, 90–99 % enantioselectivities, and with high turnover numbers (up to 2000 S/C; S/C=substrate/catalyst ratio). A mechanism for the promoting effect of ZnCl2 on the catalytic system has been proposed on the basis of NMR spectroscopy and HRMS studies. This method was successfully applied to the asymmetric syntheses of three important drugs, (S)‐duloxetine, (R)‐fluoxetine, and (R)‐atomoxetine, in high yields and with excellent enantioselectivities.  相似文献   

8.
A combined catalyst system of a cinchonidine‐derived primary amine and triphenylphosphine (CD‐NH2/PPh3) exhibited high catalytic performance in the Michael reaction of aldehydes with maleimides, thereby affording the corresponding functionalized aldehydes in excellent yields (up to 99 %) and enantioselectivities (>99 % ee). More interestingly, the significance of the phosphine in enhancing the enantioselectivities in the chiral‐primary‐amine‐catalyzed Michael reaction was revealed. Furthermore, we explored the origin of the reaction mechanism in the Michael addition promoted by the dual organocatalytic system. On the basis of experimental results and spectroscopic analysis, such as UV/Vis, fluorescence emission (FL), NMR, and circular dichroism (CD) spectroscopy, as well as ESI‐MS, we found that the molecular assembly of phosphine and primary amine played a crucial role in this enantioselective reaction, in which a possible supramolecular complex was formed as an effective chiral catalyst through noncovalent molecular interactions of a cinchona alkaloid‐derived primary amine with triphenylphosphine.  相似文献   

9.
An effective catalytic system that imparts high enantioselectivity has been disclosed for the synthesis of optically active alcohols, which may undergo further chemical transformations. The enantioselective alkylation of aldehydes with dialkylzincs to afford the corresponding optically active alcohols with excellent enantioselectvities has been achieved in the presence of 0.1–0.5 mol % of the camphor‐derived chiral ligand (?)‐2‐exo‐morpholinoisobornane‐10‐thiol (MITH) ( 1 ) at room temperature or at 0 °C.  相似文献   

10.
The osmium complexes trans‐[OsCl2(dppf)(diamine)] (dppf: 1,1′‐bis(diphenylphosphino)ferrocene; diamine: ethylenediamine in 3 , propylenediamine in 4 ) were prepared by the reaction of [OsCl2(PPh3)3] ( 1 ) with the ferrocenyl diphosphane, dppf and the corresponding diamine in dichloromethane. The reaction of derivative 3 with NaOCH2CF3 in toluene afforded the alkoxide cis‐[Os(OCH2CF3)2(dppf)(ethylenediamine)] ( 5 ). The novel precursor [Os2Cl4(P(m‐tolyl)3)5] ( 2 ) allows the synthesis of the chiral complexes trans‐[OsCl2(diphosphane)(1,2‐diamine)] ( 6 – 9 ; diphosphane: (R)‐[6,6′‐dimethoxy(1,1′‐biphenyl)‐2,2′‐diyl]bis[1,1‐bis(3,5‐dimethylphenyl)phosphane] (xylMeObiphep) or (R)‐(1,1′‐binaphthalene)‐2,2′‐diylbis[1,1‐bis(3,5‐dimethylphenyl)phosphane] (xylbinap); diamine=(R,R)‐1,2‐diphenylethylenediamine (dpen) or (R,R)‐1,2‐diaminocyclohexane (dach)), obtained by the treatment of 2 with the diphosphane and the 1,2‐diamine in toluene at reflux temperature. Compounds 3 – 5 in ethanol and in the presence of NaOEt catalyze the reduction of methyl aryl, dialkyl, and diaryl ketones and aldehydes with H2 at low pressure (5 atm), with substrate/catalyst (S/C) ratios of 10 000–200 000 and achieving turnover frequencies (TOFs) of up to 3.0×105 h?1 at 70 °C. By employment of the chiral compounds 6 – 9 , different ketones, including alkyl aryl, bulky tert‐butyl, and cyclic ketones, have successfully been hydrogenated with enantioselectivities up to 99 % and with S/C ratios of 5000–100 000 and TOFs of up to 4.1×104 h?1 at 60 °C.  相似文献   

11.
Enantioselective addition of diethylzinc to a series of aromatic aldehydes was developed using a modular amino acids and ${\bf \beta}$ ‐amino alcohol‐based chiral ligand (2R)‐N‐[(1R,2S)‐1‐hydroxy‐1‐phenylpropan‐2‐yl]‐3‐phenyl‐2‐(tosylamino) propanamide ( 1f ) without using titanium complex. The catalytic system employing 15 mol% of 1f was found to promote the addition of diethylzinc (ZnEt2) to a wide range of aromatic aldehydes with electron‐donating and electron‐withdrawing substituents, giving up to 97% ee of the corresponding secondary alcohol under mild conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Chiral oxazolines have been synthesized from norephedrine and pyrrole nitrile or benzoyl chloride and applied to the catalytic asymmetric Henry reactions of p-nitro aldehydes with nitromethane to provide β-hydroxy nitroalkanols in high conversion (up to 92%). The reaction was then optimized in terms of the metal, solvent, temperature, and amount of chiral ligand. The corresponding catalyst with Cu(OTf)2 and isopropanol as the solvent gave the best enantioselectivities (up to 84% ee) of the corresponding β-nitroalkanol for p-nitrobenzaldehyde.  相似文献   

13.
Zn(OH)2‐catalyzed allylation reactions of aldehydes with allylboronates in aqueous media have been developed. In contrast to conventional allylboration reactions of aldehydes in organic solvents, the α‐addition products were obtained exclusively. A catalytic cycle in which the allylzinc species was generated through a B‐to‐Zn exchange process is proposed and kinetic studies were performed. The key intermediate, an allylzinc species, was detected by HRMS (ESI) analysis and by online continuous MS (ESI) analysis. This analysis revealed that, in aqueous media, the allylzinc species competitively reacted with the aldehydes and water. An investigation of the reactivity and selectivity of the allylzinc species by using several typical allylboronates ( 6a , 6b , 6c , 6d ) clarified several important roles of water in this allylation reaction. The allylation reactions of aldehydes with allylboronic acid 2,2‐dimethyl‐1,3‐propanediol esters proceeded smoothly in the presence of catalytic amounts of Zn(OH)2 and achiral ligand 4d in aqueous media to afford the corresponding syn‐adducts in high yields with high diastereoselectivities. In all cases, the α‐addition products were obtained and a wide substrate scope was tolerated. Furthermore, this reaction was applied to asymmetric catalysis by using chiral ligand 9 . Based on the X‐ray structure of the Zn‐ 9 complex, several nonsymmetrical chiral ligands were also found to be effective. This reaction was further applied to catalytic asymmetric alkylallylation, chloroallylation, and alkoxyallylation processes and the synthetic utility of these reactions has been demonstrated.  相似文献   

14.
Yan Li 《合成通讯》2014,44(13):1938-1943
A series of β-amino alcohols derived from (1R, 2S)-2-amino-1,2-diphenylethanol and substituted salicylaldehydes as novel chiral tridentate ligands has been applied to an asymmetric Reformatsky reaction of aldehydes with ethyl iodoacetate in the presence of ZnMe2. This novel catalytic system produced the desired β-hydroxyl esters with moderate to good enantioselectivities (up to 81% ee) and yields for many aldehydes, including aromatic, heteroaromatic, conjugated, and aliphatic aldehydes.  相似文献   

15.
Asymmetric reduction of ketones with hydride complexes, which were prepared by in situ modification of NaAlH4, with various chiral amino alcohols or diamines, was studied. The highest enantioselectivity (up to 93% ee) was achieved using 2-(hydroxydiphenylmethyl)pyrrolidine as a chiral inducing agent.  相似文献   

16.
以烯烃为原料通过Sharpless不对称双羟化等多步反应合成7种手性β-氨基醇, 并将该类化合物用于催化二乙基锌和醛的不对称加成反应. 分别考察了影响对映选择性的催化剂结构、催化剂用量、溶剂、反应温度等各种因素. 当催化剂用量为5%、甲苯溶剂、在-10 ℃下、以(1S,2R)-(+)-2-氨基-1,2-二苯基乙醇(1b)作催化剂时, 所得仲醇的对映体过量最高为85% ee, 产率高达100%.  相似文献   

17.
The complexation of chiral guests in the cavity of dimeric self‐assembled chiral capsule 1 2 was studied by using NMR spectroscopy and X‐ray crystallography. Capsule 1 2 has walls composed of amino acid backbones forming numerous directional binding sites that are arranged in a chiral manner. The polar character of the interior dictates the encapsulation preferences towards hydrophilic guests and the ability of the capsule to extract guests from water into an organic phase. Chiral discrimination towards hydroxy acids was evaluated by using association constants and competition experiments, and moderate de values were observed (up to 59 %). Complexes with one or two guest molecules in the cavity were formed. For 1:1 complexes, solvent molecules are coencapsulated; this influences guest dynamics and makes the chiral recognition solvent dependent. Reversal of the preferences can be induced by coencapsulation of a nonchiral solvent in the chiral internal environment. For complexes with two guests, filling of the capsule’s internal space can be very effective and packing coefficients of up to 70 % can be reached. The X‐ray crystal structure of complex 1 2?((S) ‐6 )2 with well‐resolved guest molecules reveals a recognition motif that is based on an extensive system of hydrogen bonds. The optimal arrangement of interactions with the alternating positively and negatively charged groups of the capsule’s walls is fulfilled by the guest carboxylic groups acting simultaneously as hydrogen‐bond donors and acceptors. An additional guest molecule interacting externally with the capsule reveals a possible entrance mechanism involving a polar gate. In solution, the structural features and dynamic behavior of the D4‐symmetric homochiral capsule were analyzed by variable‐temperature NMR spectroscopy and the results were compared with those for the S8‐symmetric heterochiral capsule.  相似文献   

18.
Enantioselective addition of diethylzinc to a series of aromatic aldehydes was developed using a modular amino acid amide chiral ligand (2S)‐3‐phenyl‐N‐((R)‐1‐phenyl‐ethyl)‐2‐(tosylamino)propanamide without using titanium complex. The catalytic system employing 10 mol% of 1g was found to promote the addition of diethylzinc (ZnEt2) to a wide range of aromatic aldehydes with electron‐donating and electron‐withdrawing substituents, giving up to 82% ee of the corresponding secondary alcohol under mild conditions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Synthesis of α‐amino phosphonates is described under solvent‐free conditions at 100°C from reaction between aldehydes and amines in the presence of trialkyl phosphites using Al(H2PO4)3 as an efficient and reusable heterogeneous catalyst. The advantages of this procedure are short reaction time, flexibility and having high to excellent yields.  相似文献   

20.
A highly efficient and practical method for the catalytic enantioselective arylation and heteroarylation of aldehydes with organotitanium reagents, prepared in situ by the reaction of aryl‐ and heteroaryllithium reagents with ClTi(OiPr)3, is described. Titanium complexes derived from DPP‐H8‐BINOL ( 3 d ; DPP=3,5‐diphenylphenyl) and DTBP‐H8‐BINOL ( 3 e ; DTBP=3,5‐di‐tert‐butylphenyl) exhibit excellent catalytic activity in terms of enantioselectivity and turnover efficiency for the transformation, providing diaryl‐, aryl heteroaryl‐, and diheteroarylmethanol derivatives in high enantioselectivity at low catalyst loading (0.2–2 mol %). The reaction begins with a variety of aryl and heteroaryl bromides through their conversion into organolithium intermediates by Br/Li exchange with nBuLi, thus providing straightforward access to a range of enantioenriched alcohols from commercially available starting materials. Various 2‐thienylmethanols can be synthesized enantioselectively by using commercially available 2‐thienyllithium in THF. The reaction can be carried out on a 10 mmol scale at 0.5 mol % catalyst loading, demonstrating its preparative utility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号