首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gap detection thresholds were measured in patients with the Nucleus and Symbion cochlear implants as a function of several current waveform parameters. Detection of gaps in an electrical sinusoidal stimulus or in a train of biphasic pulses by implanted patients was similar to detection of gaps in comparable acoustic stimuli by normal listeners. Threshold gaps were 20-50 ms for low-level stimuli and improved with stimulus level to 2-5 ms for high-level stimuli. Gap detection performance was not affected by the electrode position in the cochlea or by the distance between stimulating electrodes. The data from most patients were well fitted by a trading relation between the duration of the gap and the square of stimulus intensity, indicating energy detection. The similarity of gap thresholds for normal subjects and implant patients suggests that many details of the peripheral neural activity are probably not important for this task, and that there is no retrocochlear loss of auditory temporal resolution with sensorineural hearing loss.  相似文献   

2.
Simultaneous or near-simultaneous activation of adjacent cochlear implant electrodes can produce pitch percepts intermediate to those produced by each electrode separately, thereby increasing the number of place-pitch steps available to cochlear implant listeners. To estimate how many distinct pitches could be generated with simultaneous dual-electrode stimulation, the present study measured place-pitch discrimination thresholds for single- versus dual-electrode stimuli in users of the Clarion CII device. Discrimination thresholds were expressed as the proportion of current directed to the secondary electrode of the dual-electrode pair. For 16 of 17 electrode pairs tested in six subjects, thresholds ranged from 0.11 to 0.64, suggesting that dual-electrode stimuli can produce 2-9 discriminable pitches between the pitches of single electrodes. Some subjects demonstrated a level effect, with better place-pitch discrimination at higher stimulus levels. Equal loudness was achieved with dual-electrode stimuli at net current levels that were similar to or slightly higher than those for single-electrode stimuli.  相似文献   

3.
Gap detection and masking in hearing-impaired and normal-hearing subjects   总被引:7,自引:0,他引:7  
Subjects with cochlear impairments often show reduced temporal resolution as measured in gap-detection tasks. The primary goals of these experiments were: to assess the extent to which the enlarged gap thresholds can be explained by elevations in absolute threshold; and to determine whether the large gap thresholds can be explained by the same processes that lead to a slower-than-normal recovery from forward masking. In experiment I gap thresholds were measured for nine unilaterally and eight bilaterally impaired subjects, using bandlimited noise stimuli centered at 0.5, 1.0, and 2.0 kHz. Gap thresholds were usually larger for the impaired ears, even when the comparisons were made at equal sensation levels (SLs). Gap thresholds tended to increase with increasing absolute threshold, but the scatter of gap thresholds was large for a given degree of hearing loss. In experiment II threshold was measured as a function of the delay between the onset of a 210-ms masker and the onset of a 10-ms signal in both simultaneous- and forward-masking conditions. The signal frequency was equal to the center frequency of the bandlimited noise masker, which was 0.5, 1.0, or 2.0 kHz. Five subjects with unilateral cochlear impairments, two subjects with bilateral impairments, and two normal subjects were tested. The rate of recovery from forward masking, particularly the initial rate, was usually slower for the impaired ears, even when the maskers were presented at equal SLs. Large gap thresholds tended to be associated with slow rates of recovery from forward masking.  相似文献   

4.
In a single interval task, multichannel cochlear implant patients were asked to identify the members of a set of seven electric stimuli differing in electric pulse rate or electrode position. The perceptual sensitivity index (d') between successive stimuli in a stimulus set was calculated from the confusions among the seven stimuli. The results showed that the pulse rate above which the identification task became difficult varied from 200 to 600 pps from patient to patient. For the identification of the positions of seven bipolar electrode pairs, d' measures for stimulus sets differing in spatial separation or spatial extent were compared. Spatial separation is defined as the fixed distance between the two basal (or apical) electrodes of two successive bipolar electrode pairs in a stimulus set, while spatial extent is defined as the fixed distance between the apical and basal electrodes of each bipolar electrode pair in a stimulus set. The results showed that perceptual performance improved in an orderly way with spatial separation, but was not significantly affected by spatial extent.  相似文献   

5.
Bilateral cochlear implant (BiCI) users gain an advantage in noisy situations from a second implant, but their bilateral performance falls short of normal hearing listeners. Channel interactions due to overlapping electrical fields between electrodes can impair speech perception, but its role in limiting binaural hearing performance has not been well characterized. To address the issue, binaural masking level differences (BMLD) for a 125 Hz tone in narrowband noise were measured using a pair of pitch-matched electrodes while simultaneously presenting the same masking noise to adjacent electrodes, representing a more realistic stimulation condition compared to prior studies that used only a single electrode pair. For five subjects, BMLDs averaged 8.9 ± 1.0 dB (mean ± s.e.) in single electrode pairs but dropped to 2.1 ± 0.4 dB when presenting noise on adjacent masking electrodes, demonstrating a negative impact of the additional maskers. Removing the masking noise from only the pitch-matched electrode pair not only lowered thresholds but also resulted in smaller BMLDs. The degree of channel interaction estimated from auditory nerve evoked potentials in three subjects was significantly and negatively correlated with BMLD. The data suggest that if the amount of channel interactions can be reduced, BiCI users may experience some performance improvements related to binaural hearing.  相似文献   

6.
Thresholds for the detection of temporal gaps were measured using two types of signals to mark the gaps: bandpass-filtered noises and sinusoids. The first experiment used seven subjects with relatively flat unilateral moderate cochlear hearing loss. The normal ear of each subject was tested both at the same sound-pressure level (SPL) as the impaired ear, and at the same sensation level (SL). Background noise was used to mask spectral "splatter" associated with the gap. For the noise markers, gap thresholds tended to be larger for the impaired ears than for the normal ears when the comparison was made at equal SPL; the difference was reduced, but not eliminated, when the comparison was made at equal SL. Gap thresholds for both the normal and impaired ears decreased as the center frequency increased from 0.5 to 2.0 kHz. For the sinusoidal markers, gap thresholds were often similar for the normal and impaired ears when tested at equal SPL, and were larger for the normal ears when tested at equal SL. Gap thresholds did not change systematically with frequency. Gap thresholds using sinusoidal markers were smaller than those using noise markers. In the second experiment, three subjects with single-channel cochlear implants were tested. Gap thresholds for noise bands tended to increase with increasing center frequency when the noise bandwidth was fixed, and to decrease with increasing bandwidth when the center frequency was fixed. Gap thresholds for sinusoids did not change with center frequency, but decreased markedly with increasing level. Gap thresholds for sinusoids were considerably smaller than those for noise bands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Three psychophysical studies were conducted on two multichannel cochlear implant patients. The first study investigated the amount of loudness summation as a function of the spatial separation between two bipolar electrode pairs in the cochlea. Summation was found to increase in an orderly way with the separation between the two electrode pairs. This observation suggested that loudness was related to the distribution of discharge rate of auditory neurons along the cochlea for electric stimulation, and a model of loudness summation formulated on the basis of a functional relationship between loudness and the discharge rate distribution was proposed. The second study investigated the possibility of estimating the discharge rate distribution by means of masking. The amount of masking was found to decrease in an orderly fashion with the spatial separation between the masker and probe electrode pairs. This pattern of masking is consistent with the physiological and modeling observation that the current and neural discharge rate distributions produced by an electrode pair (masker) in the cochlea are approximately bell shaped with gradually decaying borders. The third study investigated the just-discriminable changes in the temporal delay between two interleaving pulse trains delivered, respectively, to two electrode pairs in the cochlea. Discrimination performance was found to decrease with the spatial separation between the two electrode pairs.  相似文献   

8.
Temporal gap detection was measured as a function of absolute signal bandwidth at a low-, a mid-, and a high-frequency region in six listeners with normal hearing sensitivity. Gap detection threshold decreased monotonically with increasing stimulus bandwidth at each of the three frequency regions. Given conditions of equivalent absolute bandwidth, gap detection thresholds were not significantly different for upper cutoff frequencies ranging from 600 to 4400 Hz. A second experiment investigated gap detection thresholds at two pressure-spectrum levels, conditions typically resulting in substantially different estimates of frequency selectivity. Estimates of frequency selectivity were collected at the two levels using a notched-noise masker technique. The gap threshold-signal bandwidth functions were almost identical at pressure-spectrum levels of 70 dB and 40 dB for the two subjects in experiment II, while estimates of frequency selectivity showed poorer frequency selectivity at the 70-dB level than at 40 dB. Data from both experiments indicated that gap detection in bandlimited noise was inversely related to signal bandwidth and that gap detection did not vary significantly with changes in signal frequency over the range of 600 to 4400 Hz. Over the range of frequencies investigated, the results indicated no clear relation between gap detection for noise stimuli and peripheral auditory filtering.  相似文献   

9.
Cochlear implant subjects continue to experience difficulty understanding speech in noise and performing pitch-based musical tasks. Acoustic model studies have suggested that transmitting additional fine structure via multiple stimulation rates is a potential mechanism for addressing these issues [Nie et al., IEEE Trans. Biomed. Eng. 52, 64-73 (2005); Throckmorton et al., Hear. Res. 218, 30-42 (2006)]; however, results from preliminary cochlear implant studies have been less compelling. Multirate speech processing algorithms previously assumed a place-dependent pitch structure in that a basal electrode would always elicit a higher pitch percept than an apical electrode, independent of stimulation rate. Some subjective evidence contradicts this assumption [H. J. McDermott and C. M. McKay, J. Acoust. Soc. Am. 101, 1622-1630 (1997); R. V. Shannon, Hear. Res. 11, 157-189 (1983)]. The purpose of this study is to test the hypothesis that the introduction of multiple rates may invalidate the tonotopic pitch structure resulting from place-pitch alone. The SPEAR3 developmental speech processor was used to collect psychophysical data from five cochlear implant users to assess the tonotopic structure for stimuli presented at two rates on all active electrodes. Pitch ranking data indicated many cases where pitch percepts overlapped across electrodes and rates. Thus, the results from this study suggest that pitch-based tuning across rate and electrode may be necessary to optimize performance of a multirate sound processing strategy in cochlear implant subjects.  相似文献   

10.
Experiments were conducted with a single, bilateral cochlear implant user to examine interaural level and time-delay cues that putatively underlie the design and efficacy of bilateral implant systems. The subject's two implants were of different types but custom equipment allowed presentation of controlled bilateral stimuli, particularly those with specified interaural time difference (ITD) and interaural level difference (ILD) cues. A lateralization task was used to measure the effect of these cues on the perceived location of the sensations elicited. For trains of fixed-amplitude, biphasic current pulses at 100 pps, the subject demonstrated sensitivity to an ITD of 300 micros, providing evidence of access to binaural information. The choice of bilateral electrode pair greatly influenced ITD sensitivity, suggesting that electrode pairings are likely to be an important consideration in the effort to provide binaural advantages. The selection of bilateral electrode pairs showing sensitivity to ITD was partially aided by comparisons of the pitch elicited by individual electrodes in each ear (when stimulated alone with fixed-amplitude current pulses at 813 pps): specifically, interaural electrodes with similar pitches were more likely (but not certain) to show ITD sensitivity. Significant changes in lateral position occurred with specific electrode pairs. With five bilateral electrode pairs of 14 tested, ITDs of 300 and 600 micros moved an auditory image significantly from right to left. With these same pairs, ILD changes of approximately 11% of the dynamic range (in microApp) moved an auditory image from the far left to the far right-significantly farther than the nine pairs not showing significant ITD sensitivity. However, even these nine pairs did show response changes as a function of the interaural (or confounding monaural) level cue. Overall, insofar as the access to bilateral cues demonstrated herein generalizes to other subjects, it provides hope that the normal binaural advantages for speech recognition and sound localization can be made available to bilateral implant users.  相似文献   

11.
Gap detection thresholds for speech and analogous nonspeech stimuli were determined in younger and older adults with clinically normal hearing in the speech range. Gap detection thresholds were larger for older than for younger listeners in all conditions, with the size of the age difference increasing with stimulus complexity. For both ages, gap detection thresholds were far smaller when the markers before and after the gap were the same (spectrally symmetrical) compared to when they were different (spectrally asymmetrical) for both speech and nonspeech stimuli. Moreover, gap detection thresholds were smaller for nonspeech than for speech stimuli when the markers were spectrally symmetrical but the opposite was observed when the markers were spectrally asymmetrical. This pattern of results may reflect the benefit of activating well-learned gap-dependent phonemic contrasts. The stimulus-dependent age effects were interpreted as reflecting the differential effects of age-dependent losses in temporal processing ability on within- and between-channel gap detection.  相似文献   

12.
The ability to recognize synthetic, two-formant vowels with equal duration and similar loudness was measured in five subjects with the Cochlear and five subjects with the Symbion cochlear implants. In one set of test stimuli, vowel pairs differed only in the first-formant frequency (F1). In another set, vowel pairs differed only in the second-formant frequency (F2). When F1 differed, four of five Cochlear subjects and four of five Symbion subjects recognized the vowels significantly above chance. When F2 differed, two of five Cochlear subjects and three of five Symbion subjects scored above chance. These results suggest that implanted subjects can utilize both "place" information across different electrodes and "rate" information on a single electrode to derive information about the spectral content of the stimulus.  相似文献   

13.
Psychometric functions for gap detection of temporal gaps in wideband noise were measured in a "yes/no" paradigm from normal-hearing young and aged subjects with closely matched audiograms. The effects of noise-burst duration, gap location, and uncertainty of gap location were tested. A typical psychometric function obtained in this study featured a steep slope, which was independent of most experimental conditions as well as age. However, gap thresholds were generally improved with increasing duration of the noise burst for both young and aged subjects. Gap location and uncertainty had no significant effects on the thresholds for the young subjects. For the aged subjects, whenever the gap was sufficiently away from the onset or offset of the noise burst, detectability was robust despite uncertainty about the gap location. Significant differences between young and aged subjects could be observed only when the gap was very close to the signal onset and offset.  相似文献   

14.
An acoustic model of a multiple-channel cochlear implant   总被引:1,自引:0,他引:1  
A set of bandpass filtered, pulsed noise stimuli presented to three normally hearing subjects was found to have psychophysical properties similar to those of a set of pulsed electrical stimuli presented to two cochlear implant patients. Identical procedures were used to compare the performances of the two groups of subjects in the following tasks: (a) pulse rate difference limen measurements, (b) pitch scaling for stimuli differing in pulse rate, (c) pitch scaling and categorization of stimuli differing in filter frequency or electrode position, and (d) similarity judgments of stimuli differing in pulse rate and filter frequency or electrode position. By choosing the parameters of the acoustic stimuli appropriately, a high level of agreement between the two sets of results was achieved. Electrical stimuli on electrodes at different sites in the cochlea were matched with pulsed noise passed through bandpass filters with different center frequencies. Matching was achieved for equal electrical and acoustic pulse rates.  相似文献   

15.
Psychophysical pulse-train forward-masking (PTFM) recovery functions were measured in fifteen subjects with the Nucleus mini-22 cochlear implant and six subjects with the Clarion cochlear implant. Masker and probe stimuli were 500-Hz trains of 200- or 77-micros/phase biphasic current pulses. Electrode configurations were bipolar for Nucleus subjects and monopolar for Clarion subjects. Masker duration was 320 ms. Probe duration was either 10 ms or 30 ms. Recovery functions were measured for a high-level masker on a middle electrode in all 21 subjects, on apical and basal electrodes in 7 of the Nucleus and 3 of the Clarion subjects, and for multiple masker levels on the middle electrode in 8 Nucleus subjects and 6 Clarion subjects. Recovery functions were described by an exponential process in which threshold shift (in microA) decreased exponentially with increasing time delay between the offset of the masker pulse train and the offset of the probe pulse train. All but 3 of the 21 subjects demonstrated recovery time constants on a middle electrode that were less than 95 ms. The mean time constant for these 18 subjects was 54 ms (s.d. 17 ms). Three other subjects tested on three electrodes exhibited time constants larger than 95 ms from an apical electrode only. Growth-of-masking slopes depended upon time delay, as expected from an exponential recovery process, i.e., progressively shallower slopes were observed at time delays of 10 ms and 50 ms. Recovery of threshold shift (in microA) for PTFM in electrical hearing behaves inthe same way as recovery of threshold shift (in dB) for pure-tone forward masking in acoustic hearing. This supports the concept that linear microamps are the electrical equivalent of acoustic decibels. Recovery from PTFM was not related to speech recognition in a simple manner. Three subjects with prolonged PTFM recovery demonstrated poor speech scores. The remaining subjects with apparently normal PTFM recovery demonstrated speech scores ranging from poor to excellent. Findings suggest that normal PTFM recovery is only one of several factors associated with good speech recognition in cochlear-implant listeners. Comparisons of recovery curves for 10- and 30-ms probe durations in two subjects showed little or no temporal integration at time delays less than 95 ms where recovery functions have steep slopes. The same subjects exhibited large amounts of temporal integration at longer time delays where recovery slopes are more gradual. This suggests that probe detection depends primarily on detection of the final pulses in the probe stimulus and supports the use of offset-to-offset time delays for characterizing PTFM recovery in electric hearing.  相似文献   

16.
Temporal resolution is often measured using the detection of temporal gaps or signals in temporal gaps embedded in long-duration stimuli. In this study, psychoacoustical paradigms are developed for measuring the temporal encoding of transient stimuli. The stimuli consisted of very short pips which, in two experiments, contained a steady state portion. The carrier was high-pass filtered, dynamically compressed noise, refreshed for every stimulus presentation. The first experiment shows that, with these very short stimuli, gap detection thresholds are about the same as obtained in previous investigations. Experiments II and III show that, using the same stimuli, temporal-separation thresholds and duration-discrimination thresholds are better than gap-detection thresholds. Experiment IV investigates the significance of residual spectral cues for the listeners' performance. In experiment V, temporal separation thresholds were measured as a function of the signal-pip sensation level (SL) in both forward- and backward-masking conditions. The separation thresholds show a strong temporal asymmetry with good separation thresholds independent of signal-pip SL in backward-masking conditions and increasing separation thresholds with decreasing signal-pip SL in forward-masking conditions. A model of the auditory periphery is used to stimulate the gap-detection and temporal-separation thresholds quantitatively. By varying parameters like auditory-filter width and transduction time constants, the model provides some insight into how the peripheral auditory system may cope with temporal processing tasks and thus represents a more physiology-related complement to current models of temporal processing.  相似文献   

17.
Better place-coding of the fundamental frequency in cochlear implants   总被引:1,自引:0,他引:1  
In current cochlear implant systems, the fundamental frequency F0 of a complex sound is encoded by temporal fluctuations in the envelope of the electrical signals presented on the electrodes. In normal hearing, the lower harmonics of a complex sound are resolved, in contrast with a cochlear implant system. In the present study, it is investigated whether "place-coding" of the first harmonic improves the ability of an implantee to discriminate complex sounds with different fundamental frequencies. Therefore, a new filter bank was constructed, for which the first harmonic is always resolved in two adjacent filters, and the balance between both filter outputs is directly related to the frequency of the first harmonic. The new filter bank was compared with a filter bank that is typically used in clinical processors, both with and without the presence of temporal cues in the stimuli. Four users of the LAURA cochlear implant participated in a pitch discrimination task to determine detection thresholds for F0 differences. The results show that these thresholds decrease noticeably for the new filter bank, if no temporal cues are present in the stimuli. If temporal cues are included, the differences between the results for both filter banks become smaller, but a clear advantage is still observed for the new filter bank. This demonstrates the feasibility of using place-coding for the fundamental frequency.  相似文献   

18.
Thresholds were measured for the detection of a temporal gap in a bandlimited noise signal presented in a continuous wideband masker, using an adaptive forced-choice procedure. In experiment I the ratio of signal spectrum level to masker spectrum level (the SMR) was fixed at 10 dB and gap thresholds were measured as a function of signal bandwidth at three center frequencies: 0.4, 1.0, and 6.5 kHz. Performance improved with increasing bandwidth and increasing center frequency. For a subset of conditions, gap threshold was also measured as bandwidth was varied keeping the upper cutoff frequency of the signal constant. In this case the variation of gap threshold with bandwidth was more gradual, suggesting that subjects detect the gap using primarily the highest frequency region available in the signal. At low center frequencies, however, subjects may have a limited ability to combine information in different frequency regions. In experiment II gap thresholds were measured as a function of SMR for several signal bandwidths at each of three center frequencies: 0.5, 1.0, and 6.5 kHz. Gap thresholds improved with increasing SMR, but the improvement was minimal for SMRs greater than 12-15 dB. The results are used to evaluate the relative importance of factors influencing gap threshold.  相似文献   

19.
Forward-masked psychophysical spatial tuning curves (fmSTCs) were measured in 15 cochlear-implant subjects, 10 using monopolar stimulation and 5 using bipolar stimulation. In each subject, fmSTCs were measured at several probe levels on an apical, middle, and basal electrode using a fixed-level probe stimulus and variable-level maskers. Tuning curve slopes and bandwidths did not change significantly with probe level for electrodes located in the apical, middle, or basal region although a few subjects exhibited dramatic changes in tuning at the extremes of the probe level range. Average tuning curve slopes and bandwidths did not vary significantly across electrode regions. Spatial tuning curves were symmetrical and similar in width across the three electrode regions. However, several subjects demonstrated large changes in slope and/or bandwidth across the three electrode regions, indicating poorer tuning in localized regions of the array. Cochlear-implant users exhibited bandwidths that were approximately five times wider than normal-hearing acoustic listeners but were in the same range as acoustic listeners with moderate cochlear hearing loss. No significant correlations were found between spatial tuning parameters and speech recognition; although a weak relation was seen between middle electrode tuning and transmitted information for vowel second formant frequency.  相似文献   

20.
This study examined within- and across-electrode-channel processing of temporal gaps in successful users of MED-EL COMBI 40+ cochlear implants. The first experiment tested across-ear gap duration discrimination (GDD) in four listeners with bilateral implants. The results demonstrated that across-ear GDD thresholds are elevated relative to monaural, within-electrode-channel thresholds; the size of the threshold shift was approximately the same as for monaural, across-electrode-channel configurations. Experiment 1 also demonstrated a decline in GDD performance for channel-asymmetric markers. The second experiment tested the effect of envelope fluctuation on gap detection (GD) for monaural markers carried on a single electrode channel. Results from five cochlear implant listeners indicated that envelopes associated with 50-Hz wide bands of noise resulted in poorer GD thresholds than envelopes associated with 300-Hz wide bands of noise. In both cases GD thresholds improved when envelope fluctuations were compressed by an exponent of 0.2. The results of both experiments parallel those found for acoustic hearing, therefore suggesting that temporal processing of gaps is largely limited by factors central to the cochlea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号