首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we first construct the Cauchy q-shift operator T(a, b;D xy ) and the Cauchy q-difference operator L(a, b; θ xy ). We then apply these operators in order to represent and investigate some new families of q-polynomials which are defined in this paper. We derive some q-identities such as generating functions, symmetry properties and Rogers-type formulas for these q-polynomials. We also give an application for the q-exponential operator R(bD q ).  相似文献   

2.
The structure of unitary irreducible representations of the noncompact uq(2, 1) quantum algebra that are related to a negative discrete series is examined. With the aid of projection operators for the suq(2) subalgebra, a q analog of the Gelfand-Graev formulas is derived in the basis corresponding to the reduction uq(2, 1) → suq(2)×u(1). Projection operators for the suq(1, 1) subalgebra are employed to study the same representations for the reduction uq(2, 1) → u(1)×suq(1, 1). The matrix elements of the generators of the uq(2, 1) algebra are computed in this new basis. A general analytic expression for an element of the transformation brackets <U∣T>q between the bases associated with the above two reductions (the elements of this matrix are referred to as q Weyl coefficients) is obtained for a general case where the deformation parameter q is not equal to a root of unity. It is shown explicitly that, apart from a phase, the q Weyl coefficients coincide with the q Racah coefficients for the suq(2) quantum algebra.  相似文献   

3.
We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter q is called as nonextensivity parameter. When q = 1, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of q-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation ?end, the spectral index and the associated running of the spectral index are ns ? 1 ~ ?2??, αs ≡ 0. To end the inflation: we should have \(q=\frac {3}{4}\). We deduce that the inflation ends when the evolution of the scale factor is a(t) = e3/4(t). With this scale factor there is no need to specify ?end. As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term Γ. In the first case when Γ = Γ0, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. ns = 1) may be approximately presented by (\(q=\frac {9}{10},~~N=70\)). Also there is a range of values of R and ns which is compatible with the BICEP2 data where \(q=\frac {9}{10}\). In case Γ = Γ1V(?), it is observed that small values of a number of e-folds are assured for small values of q parameter. Also in this case, the scale-invariant spectrum may be represented by \((q,N) = (\frac {9}{10},70)\). For \(q=\frac {9}{10}\) a range of values of R and ns is compatible with the BICEP2 data. Consequently, the proposal of q-de Sitter is consistent with observational data. We observe that the non-extensivity parameter q plays a significant role in inflationary scenario.  相似文献   

4.
For the first time, we introduce so-called fundamental entangling operators \(e^{iQ_{1} P_{2}}\) and \(e^{iP_{1} Q_{2} }\) for composing bipartite entangled states of continuum variables, where Qi and Pi (i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation (q1, q2) → (Aq1 + Bq2, Cq1 + Dq2), where AD?BC = 1, which means even the basic coordinate transformation (Q1, Q2) → (AQ1 + BQ2, CQ1 + DQ2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.  相似文献   

5.
The interaction of an electromagnetic E wave with a thin metal film placed between two dielectric media is calculated in the case of different specular reflectances q1 and q2 for the reflection of electrons from the surface of the thin metal layer, in the case of variations in the values of dielectric permittivities ε1 and ε2 of the media, and in the case of different values of angle of incidence θ of the electromagnetic wave. The behavior of reflection coefficient R, transmission coefficient T, and absorption coefficient A in relation to the frequency of the external field is analyzed.  相似文献   

6.
We study an inverse problem for the two-dimensional random Schrödinger equation (Δ + q + k 2)u = 0. The potential q(x) is assumed to be a Gaussian random function whose covariance operator is a classical pseudodifferential operator. We show that the backscattered field, obtained from a single realization of the random potential q, determines uniquely the principal symbol of the covariance operator of q. The analysis is carried out by combining harmonic and microlocal analysis with stochastic methods.  相似文献   

7.
We investigate first-order approximations to both (i) Tsallis’ entropy S q and (ii) the S q -MaxEnt solution (called q-exponential functions e q ). We use an approximation/expansion for q very close to unity. It is shown that the functions arising from the procedure (ii) are the MaxEnt solutions to the entropy emerging from (i). Our present treatment is motivated by the fact it is FREE of the poles that, for classic quadratic Hamiltonians, appear in Tsallis’ approach, as demonstrated in [A. Plastimo, M.C. Rocca, Europhys. Lett. 104, 60003 (2013)]. Additionally, we show that our treatment is compatible with extant date on the ozone layer.  相似文献   

8.
It has been shown that the currently used method for calculating the temperature range of δTg in the glass transition equation qτg = δTg as the difference δTg = (T12T13) results in overestimated values, which is explained by the assumption of a constant activation energy of glass transition in deriving the calculation equation (T12 and T13 are the temperatures corresponding to the logarithmic viscosity values of logη = 12 and logη = 13). The methods for the evaluation of δTg using the Williams–Landel–Ferry equation and the model of delocalized atoms are considered, the results of which are in satisfactory agreement with the product qτg (q is the cooling rate of the melt and τg is the structural relaxation time at the glass transition temperature). The calculation of τg for inorganic glasses and amorphous organic polymers is proposed.  相似文献   

9.
The slow dynamics of microscopic density correlations in supercooled glycerol was studied by time-domain interferometry using 57Fe-nuclear resonant scattering gamma rays of synchrotron radiation. The dependence of the relaxation time at 250 K on the momentum transfer q is maximum near the first peak of the static structure factor S(q) at q ~ 15 nm ?1. The q-dependent behavior of the relaxation time known as de Gennes narrowing was confirmed in glycerol. Conversely, de Gennes narrowing around the second and third peaks of S(q) at q ~ 26 nm ?1 and 54 nm ?1 was not detected. The q dependence of the relaxation time was found to follow a power-law equation with power-law index of 1.9(2) in the q region well above the first peak of S(q) up to ~ 60 nm ?1, which corresponds to angstrom scale, within experimental error. This suggests that in the angstrom-scale dynamics of supercooled glycerol, independent motions dominate over collective motion.  相似文献   

10.
Differential cross sections have been measured for the small angle scattering ofγ-rays by iron, silver, tantalum, lead and uranium with 17 MeV photons from Li7 (p, γ) Be8 at mean four momentum transfersq of 0·5mc and 1·3mc and with 7 MeV photons from F19(p, αγ)O16 at mean four momentum transfer of 0·5mc. Under these experimental conditions only Compton, Rayleigh and possibly Delbrück scattering are of importance. Extrapolation of known theoretical results to higher energies shows, that Rayleigh and Compton scattering from bound electrons should depend only onq for small angles, smallq and fixedZ. Using this it follows, that at 17 MeV andq≈0·5mc an additional scattering process must be present, which increases with growingZ and which is negligible in the measurements at 17 MeV withq≈1·3mc and at 7 MeV withq≈0·5mc. These results are in qualitative agreement with the approximate theory for Delbrück scattering ofBethe andRohrlich, however experimental cross sections at 17 MeV andq≈0·5mc are about a factor of 1·6 lower than those predicted by this theory. This discrepancy is not unexpected, since exact calculations of Delbrück scattering amplitude fromKessler andZernik at 2·62 MeV and 6·14 MeV show even greater deviations in the same sense.  相似文献   

11.
The subject of q-analysis, which is popularly known as quantum analysis, has its roots in such important areas as (for example) Mathematical Physics, Analytic Number Theory, and the Theory of Partitions. Our present investigation is motivated essentially by the potential for applications of q-series and q-polynomials, especially the basic (or q-) and bibasic hypergeometric functions and the corresponding hypergeometric polynomials. The main object of this paper is to investigate the Bailey transform, the Bailey pair and the WP-Bailey pair of sequences and some of their applications in order to establish a number transformation formulas for q-hypergeometric series as well as bi-basic hypergeometric series, together with several other related q-series identities.  相似文献   

12.
A quantization procedure without Hamiltonian is reported which starts from a statistical ensemble of particles of mass m and an associated continuity equation. The basic variables of this theory are a probability density ρ, and a scalar field S which defines a probability current j=ρ ? S/m. A first equation for ρ and S is given by the continuity equation. We further assume that this system may be described by a linear differential equation for a complex-valued state variable χ. Using these assumptions and the simplest possible Ansatz χ(ρ,S), for the relation between χ and ρ,S, Schrödinger’s equation for a particle of mass m in a mechanical potential V(q,t) is deduced. For simplicity the calculations are performed for a single spatial dimension (variable q). Using a second Ansatz χ(ρ,S,q,t), which allows for an explicit q,t-dependence of χ, one obtains a generalized Schrödinger equation with an unusual external influence described by a time-dependent Planck constant. All other modifications of Schrödinger’ equation obtained within this Ansatz may be eliminated by means of a gauge transformation. Thus, this second Ansatz may be considered as a generalized gauging procedure. Finally, making a third Ansatz, which allows for a non-unique external q,t-dependence of χ, one obtains Schrödinger’s equation with electrodynamic potentials A,φ in the familiar gauge coupling form. This derivation shows a deep connection between non-uniqueness, quantum mechanics and the form of the gauge coupling. A possible source of the non-uniqueness is pointed out.  相似文献   

13.
Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ε (q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged <ε (q, ω) >  q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) < Im[?1/ε (q, ω)] >  q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 (L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0?CVL ?=?(H 0?CVC H 0?LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, \( {\gamma}_{CV}^d \), and a guess value of the cutoff distance H 0?CVC of the solid.
Graphical Abstract
  相似文献   

14.
Monogamy of entanglement is a fundamental property of multipartite entangled states. In this article, due to the convexity of Trρq with respect to q when q ≥ 1, we give a monogamy-like relation in terms of Tsallis-q entanglement entropy of assistance (TqEEA) for pure states over an n- partite any dimensional system and monogamy-like relations in terms of Tsallis-q entanglement entropy (TqEE) for mixed states for any dimensional system, we also give a lower bound for the TqEE of a four-partite pure state. At last, we show that the generalized W-class states satisfy the polygamy relation in terms of TqEE when q = 2.  相似文献   

15.
An n-step Pearson-Gamma random walk in ? d starts at the origin and consists of n independent steps with gamma distributed lengths and uniform orientations. The gamma distribution of each step length has a shape parameter q>0. Constrained random walks of n steps in ? d are obtained from the latter walks by imposing that the sum of the step lengths is equal to a fixed value. Simple closed-form expressions were obtained in particular for the distribution of the endpoint of such constrained walks for any dd 0 and any n≥2 when q is either \(q = \frac{d}{2} - 1 \) (d 0=3) or q=d?1 (d 0=2) (Le Caër in J. Stat. Phys. 140:728–751, 2010). When the total walk length is chosen, without loss of generality, to be equal to 1, then the constrained step lengths have a Dirichlet distribution whose parameters are all equal to q and the associated walk is thus named a Pearson-Dirichlet random walk. The density of the endpoint position of a n-step planar walk of this type (n≥2), with q=d=2, was shown recently to be a weighted mixture of 1+floor(n/2) endpoint densities of planar Pearson-Dirichlet walks with q=1 (Beghin and Orsingher in Stochastics 82:201–229, 2010). The previous result is generalized to any walk space dimension and any number of steps n≥2 when the parameter of the Pearson-Dirichlet random walk is q=d>1. We rely on the connection between an unconstrained random walk and a constrained one, which have both the same n and the same q=d, to obtain a closed-form expression of the endpoint density. The latter is a weighted mixture of 1+floor(n/2) densities with simple forms, equivalently expressed as a product of a power and a Gauss hypergeometric function. The weights are products of factors which depends both on d and n and Bessel numbers independent of d.  相似文献   

16.
The relation between the broken rotational symmetry of a system and the topology of its Fermi surface is studied for the two-dimensional system with the quasiparticle interaction f(p, p') having a sharp peak at |p ? p'| = q0. It is shown that, in the case of attraction and q0 = 2pF the first instability manifesting itself with the growth of the interaction strength is the Pomeranchuk instability. This instability appearing in the L = 2 channel gives rise to a second order phase transition to a nematic phase. The Monte Carlo calculations demonstrate that this transition is followed by a sequence of the first and second order phase transitions corresponding to the changes in the symmetry and topology of the Fermi surface. In the case of repulsion and small values of q0, the first transition is a topological transition to a state with the spontaneously broken rotational symmetry, namely, corresponding to the nucleation of L ? π(pF/q0 ? 1) small hole pockets at the distance pF ? q0 from the center and the deformation of the outer Fermi surface with the characteristic multipole number equal to L. At q0 → 0, when the model under study transforms to the two-dimensional Nozières model, the multipole number characterizing the spontaneous deformation is L → ∞, whereas the infinitely folded Fermi curve acquires the Hausdorff dimension D = 2 which corresponds to the state with the fermion condensate.  相似文献   

17.
A recent phase-space formulation of quantum mechanics in terms of the Glauber coherent states is applied to study the interaction of a one-dimensional harmonic oscillator with an arbitrary time-dependent force. Wave functions of the simultaneous values of position q and momentum p are deduced, which in turn give the standard position and momentum wave functions, together with expressions for the ηth derivatives with respect to q and p, respectively. Afterwards, general formulae for momentum, position and energy expectation values are obtained, and the Ehrenfest theorem is verified. Subsequently, general expressions for the cross-Wigner functions are deduced. Finally, a specific example is considered to numerically and graphically illustrate some results.  相似文献   

18.
A class of quantum superintegrable Hamiltonians defined on a hypersurface in a n+1 dimensional ambient space with signature (p,q) is considered and a set of intertwining operators connecting them are determined. It is shown that the intertwining operators can be chosen such that they generate the su(p,q) and so(2p,2q) Lie algebras and lead to the Hamiltonians through Casimir operators. The physical states corresponding to the discrete spectrum of bound states as well as the degeneration are characterized in terms of some particular unitary representations.  相似文献   

19.
Within the model of delocalized atoms, it is shown that the parameter δTg, which enters the glasstransition equation qτg = δTg and characterizes the temperature interval in which the structure of a liquid is frozen, is determined by the fluctuation volume fraction \({f_g} = {\left( {{{\Delta {V_e}} \mathord{\left/ {\vphantom {{\Delta {V_e}} V}} \right. \kern-\nulldelimiterspace} V}} \right)_{T = {T_g}}}\) frozen at the glass-transition temperature Tg and the temperature Tg itself. The parameter δTg is estimated by data on fg and Tg. The results obtained are in agreement with the values of δTg calculated by the Williams–Landel–Ferry (WLF) equation, as well as with the product qτg—the left-hand side of the glass-transition equation (q is the cooling rate of the melt, and τg is the structural relaxation time at the glass-transition temperature). Glasses of the same class with fg ≈ const exhibit a linear correlation between δTg and Tg. It is established that the currently used methods of Bartenev and Nemilov for calculating δTg yield overestimated values, which is associated with the assumption, made during deriving the calculation formulas, that the activation energy of the glass-transition process is constant. A generalized Bartenev equation is derived for the dependence of the glass-transition temperature on the cooling rate of the melt with regard to the temperature dependence of the activation energy of the glasstransition process. A modified version of the kinetic glass-transition criterion is proposed. A conception is developed that the fluctuation volume fraction f = ΔVe/V can be interpreted as an internal structural parameter analogous to the parameter ξ in the Mandelstam–Leontovich theory, and a conjecture is put forward that the delocalization of an active atom—its critical displacement from the equilibrium position—can be considered as one of possible variants of excitation of a particle in the Vol’kenshtein–Ptitsyn theory. The experimental data used in the study refer to a constant cooling rate of q = 0.05 K/s (3 K/min).  相似文献   

20.
We give identifications of the q-deformed Segal–Bargmann transform and define the Segal–Bargmann transform on mixed q-Gaussian variables. We prove that, when defined on the random matrix model of ?niady for the q-Gaussian variable, the classical Segal–Bargmann transform converges to the q-deformed Segal–Bargmann transform in the large N limit. We also show that the q-deformed Segal–Bargmann transform can be recovered as a limit of a mixture of classical and free Segal–Bargmann transform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号