首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel (E,E)-dioxime,7,8-bis(hydroxyimino)-1,14-bis(monoaza[8]crown-6)-benzo[f]-4,11-dioxa-1,14-diazadecane[7,8-g]quinoxaline (H2L), has been synthesized by the reaction of 6,7-diamino-1,12-bis(monoaza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazadecane (4) which has been prepared by the reduction of 6,7-dinitro-1,12-bis(mono-aza[18]crown-6)benzo[f]-4,9-dioxa-1,12-diazdecane (3) and cyanogendi-N-oxide. Mononuclear NiII and CuII complexes of H2L have a metal:ligand ratio of 1:2 and the ligand coordinates through two hydroxyimino nitrogen atoms, as do most of the (E,E)-dioximes. The hydrogen-bridged NiII complex was converted into its BF 2 + capped anologue by the reaction with BF3 · Et2O. The reaction of the CuII complex with 2,2′-dipyridyl as an end-cap ligand gave the homotrinuclear complex. Structures for the ligand and its complexes are proposed in accordance with elemental analysis, magnetic susceptibility measurements, 1H, 13C-n.m.r, IR and MS spectral data.  相似文献   

2.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:15,16-tribenzo-9,15-dioxacycloheptadeca-1,5-diene (L) was synthesized by reaction of 2,6-diaminopyridine with 1,4-bis(2-carboxyaldehydephenoxy)butane. Then, its CuII, NiII, PbII, CoIII and LaIII complexes were synthesized by the template effect by reaction of 2,6-diaminopyridine and 1,4-bis (2-carboxyaldehydephenoxy)butane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La (NO3)3 · 6H2O, respectively. The ligand and its metal complexes were characterized by elemental analysis, IR, 1H- and 13C-n.m.r., UV-vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements and mass spectra. All complexes are diamagnetic and the CuII complex is binuclear. The CoII complex was oxidised to CoIII.  相似文献   

3.
Two new vic-dioxime ligands, (E,E)-N-{4-[(1,4-dioxaspiro[4.4]non-2-ylmethyl)amino]butyl}-N-hydroxy-2-(hydroxyimino)ethanimidamide (L1H2) and (E,E)-N-{4-[(1,4-dioxaspiro[4.5]dec-2-ylmethyl)amino]butyl}-N-hydroxy-2-(hydroxyimino)ethanimidamide (L2H2) containing two different heteroatoms (N,O) have been prepared from anti-chloroglyoxime, N-(1,4-dioxaspiro[4.4]non-2-ylmethyl)butane-1,4-diamine (3) and N-(1,4-dioxaspiro[4.5]dec-2-ylmethyl)butane-1,4-diamine (4). CoII, NiII and CuII complexes of the ligands have a metal:ligand ratio of 1:2 and the ligands coordinate through the two N atoms, as do most of the vic-dioximes. However, ZnII complexes of the ligands have a metal:ligand ratio of 1:1 and the ligands are coordinated only by the N, O atoms of the vic-dioximes. In the CoII complexes two water molecules, and in the ZnII complexes a chloride ion and a water molecule, are also coordinated to the metal ion. The structures of the compounds were determined by a combination of elemental analysis, magnetic moments, molar conductances, thermogravimetric analysis (t.g.a.) and spectroscopic (u.v.–vis., i.r., 1H- and 13C-n.m.r.) data.  相似文献   

4.
Metal complexes of general formula M(L)X2 and M(L)X3 [L = (4S,5S)-2,2-dimethyl-4,5-bis{6-[(4,5-dihydro-4-(S)-(1-methylethyl)oxazol-2-yl)pyridin-2-yl]}-1,3-dioxolane] were obtained by reacting, respectively, CoII, CuII, NiII, and ZnII nitrate salts and the RhIII chloride salt, with a chiral C2-symmetric bis(oxazolinylpyridinyl)dioxolane (L) ligand, in MeOH/CHCl3 solution. A single crystal X-ray analysis was carried out on [Ni(L)(OH2)2](NO3)2 · 2H2O and the molecular structure of L was also determined. In the free ligand the two symmetric arms are essentially planar and oriented nearly perpendicular to the dioxolane average plane. In the Ni complex one seven-membered and two five-membered chelation rings are formed. The metal atom also lies on the C2 axis, and two symmetry-related water molecules complete the octahedral coordination environment. Both compounds crystallize in chiral space groups; the ligand crystallizes in orthorhombic system, space group C 2 2 21, Z = 4; the nickel complex crystallizes in tetragonal system, space group P 43 21 2, Z = 4.  相似文献   

5.
One binuclear complex [Co(bpm*)2(dca)]2(ClO4)2 ( 1 ) and two 1D chain CoII complexes, {[Co(bpm)2(dca)](ClO4)}n ( 2 ) and [Co(dmf)2(dca)2]n ( 3 ), (bpm*: bis[(3, 5‐dimethyl)pyrazolyl]methane; bpm: bis(pyrazolyl)methane; dca: dicyanamide; dmf: N, N‐dimethyl formamide) have been prepared and structurally characterized. The cobalt atoms are hexa‐coordinated forming a slightly distorted octahedral coordination. Compound 1 crystallizes in the monoclinic system, space group P21/c, a = 9.849(3)Å, b = 21.944(7)Å, c = 13.814(5)Å, β = 94.824(6), Z = 4, R1 = 0.0672, wR2 = 0.1395. 1 is a binuclear complex linked by two dca ligands, and each CoII ion is coordinated by two terminal bpm* ligands. Compound 2 crystallizes in the orthorhombic system, space group Cmcm, a = 10.377(4)Å, b = 13.594(5)Å, c = 15.999(6)Å, Z = 4, R1 = 0.0609, wR2 = 0.1328. The structure of 2 can be described as a one‐dimensional zigzag chain of CoII ions bridged by one dca ligand. Each CoII ion in the chain is coordinated by two bpm ligands. Compound 3 crystallizes in the monoclinic system, space group C2, a = 13.559(15)Å, b = 7.393(8)Å, c = 8.110(9)Å, β = 112.228(15), Z = 2, R1 = 0.0260, wR2 = 0.0760. 3 has a one‐dimensional linear chain of CoII ions bridged by two dca ligands, in which each CoII ion is coordinated with two dmf molecules.  相似文献   

6.
Polynuclear complexes are an important class of inorganic functional materials and are of interest particularly for their applications in molecular magnets. Multidentate chelating ligands play an important role in the design and syntheses of polynuclear metal clusters. A novel linear tetranuclear CoII cluster, namely bis{μ3‐(E)‐2‐[(2‐oxidobenzylidene)amino]phenolato}bis{μ2‐(E)‐2‐[(2‐oxidobenzylidene)amino]phenolato}bis(1,10‐phenanthroline)tetracobalt(II), [Co4(C14H11NO2)4(C12H8N2)2], was prepared under solvothermal conditions through a mixed‐ligand synthetic strategy. The structure was determined by X‐ray single‐crystal diffraction and bulk purity was confirmed by powder X‐ray diffraction. The complex molecule has a centrosymmetric tetranuclear chain‐like structure and the four CoII ions are located in two different coordination environments. The CoII ions at the ends of the chain are in a slightly distorted octahedral geometry, while the two inner CoII ions are in five‐coordinate distorted trigonal bipyramidal environments. A magnetic study reveals ferromagnetic CoII…CoII exchange interactions for the complex.  相似文献   

7.
A new vic-dioxime, 13,14-bis-(hydroxyimino)-9,12,15,18-diazadithiaoctacosane, has been synthesized from 2-octylsulfanylaminobenzene and (E,E)-dichloroglyoxime. Mononuclear transition metal complexes of NiII, CuII, CoII and FeII have been prepared and were found to have a metal–ligand ratio of 1:2. The synthesis of di- and trinuclear complexes was achieved with UIVO2 and CuII depending on the stoichiometry of the reactants. The complexes were characterized by elemental analysis, 1H-n.m.r., u.v.–vis, i.r., f.a.b.-m.s. and by cyclic voltammetry.  相似文献   

8.
Summary The synthesis of a new macrocycle containing phenanthroline and pyridine subunits is described. The reaction of 2,9-bis(hydrazone)-1,10-phenanthroline with 2,6-bis-(bromomethyl) pyridine in the presence of MnII, CoII or NiII ion templates leads to the isolation, in high yield, of the seven-coordinate complexes [M(L3)Br2] (L3 = 4,5, 6,7,8,9-phenanthrolino-14,15,16-pyridino-1,2,5,8,11,12,15 heptaazacycloheptadecane,2,10-diene). The compounds were characterized by physical measurements, which indicated that in all the complexes the ligand is acting as a pentadentate N5 chelating agent.  相似文献   

9.
The solid-state thermal decomposition of the tetrabridged dinuclear MnII, FeII, CoII, NiII, and CuII pivalate complexes with apical α-substituted pyridine ligands containing different substituents (2,3-dimethylpyridine or quinoline) was studied by differential scanning calorimetry and thermogravimetry. The decomposition of the CoII complexes is accompanied by the aggregation to form the volatile octanuclear complex Co84-O)2n-OOCCMe3)12, where n = 2 or 3, whereas the thermolysis of the MnII, FeII, NiII, and CuII complexes is accompanied by the degradation of the starting compounds, the phase composition of the decomposition products being substantially dependent on the nature of metal and the apical organic ligand. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1650–1659, September, 2007.  相似文献   

10.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

11.
A novel vic-dioxime, 1,2 dihydroxyimino-1-p-tolyl-3-aza-6-morpholine heptane (LH2) was prepared by reacting anti-p-tolylchloroglyoxime with 4-(3-aminopropyl)morpholine in absolute THF. Mononuclear complexes with a metal–ligand ratio of 1:2 were prepared using CoII, CuII and NiII salts. The ligand and its complexes were characterized by elemental analyses, FT-IR, u.v.–vis., 1H- and 13C-n.m.r. spectra, magnetic susceptibility measurements, thermogravimetric analyses (t.g.a.), and by cyclic voltammetry.  相似文献   

12.
The design, synthesis and coordination of a novel multisite vic-dioxime compound, LH2, containing flexible pyridine substituents and aminophenylsulfanyl moieties on the periphery, facilitating solubility in water as pyridinium hydrochloride salt are described. LH2 was prepared by the reaction between 2-(2-pyridylethylamino)-benzenethiol and (E,E)-dichloroglydioxime. Mononuclear [(E,E)M] (M=NiII, CuII, CoII, FeII and MnII) and dinuclear uranyl (UO2 II) complexes of LH2 were isolated and characterized with metal:ligand ratios of 1:2 and 2:2, respectively. The reaction of Na2PdCl4·3H2O and AgNO3 in DMF with the mononuclear complex, (LH)2Ni, resulted in the formation of the heterotrinuclear complexes [Pd2Ni(LH)2]Cl4 and [Ag2Ni(LH)2](NO3)2. The complexes were characterized by elemental analysis, 1H-n.m.r., u.v.--vis. spectroscopy, i.r., and MS (LSIMS). The redox properties of the complexes were studied by cyclic voltammetry.  相似文献   

13.
The l,2-bis(sulphapyridyl)oxamide ligand [L] and its complexes with FeIII, CoII, CuII and ZnII chloride were synthesized and characterized by elemental analyses, i.r., n.m.r., e.p.r. and u.v.–vis. spectroscopy and molar conductance measurements. Spectroscopic studies show that all the complexes are octahedral and covalent. The electrochemical behaviour of the CoII complex was monitored by cyclic voltammetry in a buffer/DMF solution (95:5). The E 0 values –0.622 and –0.502 V reveal a reversible one electron redox wave attributed to a CoII/CoI redox couple at a scan rate of 0.1 V s–1. The interaction of the CoII complex with bovine milk casein (BMC) was studied at the same scan rate, which reveals a strong binding as the E 0 values shift to more negative potential (E 0 = –0.908 and –0.703 V). The cyclic voltammograms of the CoII complex bound by BMC were recorded at different pH's. The plot of E 0 versus pH showed that E 0 values are maximal at pH 7.4 indicating good interaction between the BMC and the CoII complex which is further confirmed by kinetic data. The kinetic studies of the CoII complex bound to BMC was monitored in phosphate buffer solution at different pH's by spectrophotometry. The absorbance changes were monitored at 278 nm ( max for BMC) with respect to time and pseudo-first-order rate constants, K obs, were obtained from the slope and intercept of the straight line using the least squares regression method. The plot of absorbance versus time at different pH's was linear up to 80% completion of the reaction. The pH-rate profile data reveals that the reactions are pH dependent.  相似文献   

14.
Thermolysis of cyano complexes. VII. On the thermal decomposition of hexacyanocobaltate(III); ligand exchange during thermolysis The thermal decomposition of hexacyanocobaltates(III) yields, as products of successive intramolecular redox reactions, first dicyan and CoII(CoIII)-complexes, then CoII[CoII]-complexes and simple CoII(CN)2, respectively, and finally CoICN and elemental Co, respectively. All the compounds of the [CoIII(NH3)6]3+ cation with the cyanometallate anions of Co, Fe, Cr, Mn, Ni, Mo yield the same DTA curve as [Co(NH3)6][Co(CN)6] does; in the case of Ni and Cr, which are capable of forming ammine complexes, simultaneous mutual ligand exchange occurs.  相似文献   

15.
CoII and CoIII complexes containing nitrite and tridentate aromatic amine compounds [bis(6-methyl-2-pyridylmethyl)amine (Me2bpa) and bis(2-pyridylmethyl)amine (bpa)] have been prepared as models of the catalytic center in Co-substituted nitrite reductase: [CoII(Me2bpa)(NO2)Cl]2 · acetone (2), CoII(Me2bpa)(NO2)2 (3), CoII(bpa)(NO2)Cl (4), CoII(bpa)(NO2)2 (5), CoIII(Me2bpa)(NO2)(CO3) (6), and CoIII(bpa)(NO2)3 (7). The X-ray crystal structure analyses of these CoII and CoIII complexes indicated that the geometries of the cobalt centers are distorted octahedral and the Me2bpa and bpa with three nitrogen donors exhibit mer- (2, 3, and 7) and fac-form (4 and 6). The coordination mode of nitrite depends on the cobalt oxidation state, to CoII through the oxygen (nitrito coordination, O- and O,O-coordination) and to CoIII through nitrogen (nitro coordination, N-coordination mode). These findings are consistent with the results of their IR spectra, except that another oxygen of the O-coordinated nitrito group in 3 might interact weakly with CoII according to its IR spectrum. Reductions of the nitrite in 2, 3, 4, and 5 to nitrogen monoxide were not accelerated in the presence of proton, perhaps due to the nitrito coordination in these CoII complexes.  相似文献   

16.
The synthesis of dinuclear ruthenium sawhorse-type complexes [Ru2(μ-ArCH:Rhod)2(CO)4]n 12a–e and [Ru2(ArCH:Rhod)2(μ-ArCH:Rhod)2(CO)4] 13a–e through reaction of [Ru3(CO)10(NCMe)2] and [Ru3(CO)12] and the corresponding (Z)-5-arylidenerhodanines (ArCH:Rhod) 10a–e, respectively, are reported. These complexes are arranged in a sawhorse structure in which two bridged (Z)-5-arylidenerhodanines coordinate to the metals using sulfur and nitrogen of the rhodanine ring. A Density Functional Theory method was used to gain insight into the polymerization process by calculating dimerization Gibbs energies (ΔGdim). Values between ?10.7 and ?5.3 kcal mol?1 indicate that dimerization is a spontaneous process. A reaction pathway for formation of the sawhorse compounds [Ru2(μ-ArCH:Rhod)2(CO)4] was calculated and the rate-determining step for the mechanism is coordination of a second (Z)-5-arylidenerhodanine ligand with activation energies between 41.1 and 47.8 kcal mol?1. In order to understand the apparent thermodynamic favorability of the fragmentation step, we calculated the fragmentation energy (ΔEFrag) for the key intermediate and its energetic contributors, the interaction energy, ΔEint and the reorganization energy, ΔEreorg. Low values of ΔEFrag imply that the fragmentation is thermodynamically facile. Large values of ΔEint are countered by opposite and large values of ΔEreorg which indicate that the cleavage of the trimetallic intermediate aggregate is determined by the nature of the ligand and the balance between its interaction with the metal and the extent of structural reorganization.  相似文献   

17.
A new alcohol soluble functionalized vic-dioxime, bis-[(1-hydroxyhexyl)-(8,9-hydroxyimino)-7,10-dithiahexacosane (LH2), and its alcohol-soluble mono and dinuclear complexes (NiII, CuII, CoII, MnII, PdII and UO 2 II ) have been prepared from 6-mercapto-1-hexanol and (E,E)-dichloroglyoxime under high dilution basic conditions. Reactive polyalcohol moieties appended at the periphery of the oxime containing two different heteroatoms (S-, O-), serve as a weak exocyclic binding sites for PdII and AgI metal ions and also provide solubility for the vic-dioxime complexes in low molecular-weight alcohols. Both mono-nuclear (LH)2M and homodinuclear (LH)2(UO2)2(OH)2 and heterotrinuclear (LH)2MM 2 Xn, where M = CoII M′ = PdII, X = Cl, n = 4 and AgI X = NO 3 , n = 2) complexes have been obtained with a 1:2, 2:2, 3:2 metal/ligand ratio, respectively. Electronic spectra of the modified vic-dioximes exhibit monitorable changes in UV. All mono and dinuclear-complexes are soluble in common organic solvents. The elemental analysis, 1H-n.m.r, i.r., u.v–vis, and f.a.b.–m.s data and by cyclic and differential pulse voltammetry measurements are presented.  相似文献   

18.
Simultaneous incorporation of both CoII and CoIII ions within a new thioether S‐bearing phenol‐based ligand system, H3L (2,6‐bis‐[{2‐(2‐hydroxyethylthio)ethylimino}methyl]‐4‐methylphenol) formed [Co5] aggregates [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CCH3)2](ClO4)4?H2O ( 1 ) and [CoIICoIII4L2(μ‐OH)2(μ1,3‐O2CC2H5)2](ClO4)4?H2O ( 2 ). The magnetic studies revealed axial zero‐field splitting (ZFS) parameter, D/hc=?23.6 and ?24.3 cm?1, and E/D=0.03 and 0.00, respectively for 1 and 2 . Dynamic magnetic data confirmed the complexes as SIMs with Ueff/kB=30 K ( 1 ) and 33 K ( 2 ), and τ0=9.1×10?8 s ( 1 ), and 4.3×10?8 s ( 2 ). The larger atomic radius of S compared to N gave rise to less variation in the distortion of tetrahedral geometry around central CoII centers, thus affecting the D and Ueff/kB values. Theoretical studies also support the experimental findings and reveal the origin of the anisotropy parameters. In solutions, both 1 and 2 which produce {CoIII2(μ‐L)} units, display solvent‐dependent catechol oxidation behavior toward 3,5‐di‐tert‐butylcatechol in air. The presence of an adjacent CoIII ion tends to assist the electron transfer from the substrate to the metal ion center, enhancing the catalytic oxidation rate.  相似文献   

19.
Four CuII and CoII complexes–[Cu(L1)Cl2(H2O)]3/2H2O · 1/2EtOH, [Cu(L1)2Cl2]6H2O, [Co(L1)Cl2]3H2O · EtOH, and [Co2(L1)(H2O)Cl4]1.5H2O · EtOH (L1 = 2,4,6-tri(2-pyridyl)-1,3,5-triazine; TPT)–were synthesized by conventional chemical method and used to synthesize another four metal complexes–[Cu(L1)I2(H2O)]6H2O, [Cu(L1)2I2]6H2O, [Co(L1)I(H2O)2]I · 2H2O, and [Co2(L1)I4(H2O)3]–using tribochemical reaction, by grinding it with KI. Substitution of chloride by iodide occurred, but no reduction for CuII or oxidation of CoII. Oxidation of CoII to CoIII complexes was only observed on the dissolution of CoII complexes in d6-DMSO in air while warming. The isolated solid complexes (CuII and CoII) have been characterized by elemental analyses, conductivities, spectral (IR, UV-Vis, 1H-NMR), thermal measurements (TGA), and magnetic measurements. The values of molar conductivities suggest non-electrolytes in DMF. The metal complexes are paramagnetic. IR spectra indicate that TPT is tridentate coordinating via the two pyridyl nitrogens and one triazine nitrogen forming two five-membered rings around the metal in M : L complexes and bidentate via one triazine nitrogen and one pyridyl nitrogen in ML2 complexes. In binuclear complexes, L is tridentate toward one CoII and bidentate toward the second CoII in [Co2(L1)Cl4]2.5H2O · EtOH and [Co2(L1)I4(H2O)3]. Electronic spectra and magnetic measurements suggest a distorted-octahedral around CuII and high-spin octahedral and square-pyramidal geometry around CoII.  相似文献   

20.
13,14-bis(Hydroxyimino)-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrobenzo[k]-4, 7-diaza-1,10-dithiacyclododecine[13,14-g]-quinoxaline (H2L) has been prepared from (E,E)-dichloroglyoxime and 12,13-diamino-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrobenzo[k]-4,7-diaza-1,10-dithiacyclododecine which was synthesized from 12,13-dinitro-4,7-bis(ferrocenylmethyl)-2,3,4,5,6,7,8,9-octahydrobenzo[k]4,7-diaza-1,10-dithia cyclododecine. Mononuclear nickel(II) and copper(II) complexes of H2L have a metal-ligand ratio of 1?:?2 and the ligand coordinates through two nitrogen atoms, as do most (E,E)-dioximes. The homotrinuclear [Cu(L)2Cu2(dipy)2](NO3)2 compound coordinates to the other two copper(II) ions through deprotonated oximate oxygens and two 2,2′-dipyridyl as an end-cap ligand to yield the trinuclear structure. The ligand and its complexes have been characterized on the basis of 1H, 13C NMR, IR and MS spectroscopy and elemental analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号