首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Covalent organic frameworks (COFs) RIO-13, RIO-12, RIO-11, and RIO-11m were investigated towards their CO2 capture properties by thermogravimetric analysis at 1 atm and 40 °C. These microporous COFs bear in common the azine backbone composed of hydroxy-benzene moieties but differ in the relative number of hydroxyl groups present in each material. Thus, their sorption capacities were studied as a function of their textural and chemical properties. Their maximum CO2 uptake values showed a strong correlation with an increasing specific surface area, but that property alone could not fully explain the CO2 uptake data. Hence, the specific CO2 uptake, combined with DFT calculations, indicated that the relative number of hydroxyl groups in the COF backbone acts as an adsorption threshold, as the hydroxyl groups were indeed identified as relevant adsorption sites in all the studied COFs. Additionally, the best performing COF was thoroughly investigated, experimentally and theoretically, for its CO2 capture properties in a variety of CO2 concentrations and temperatures, and showed excellent isothermal recyclability up to 3 cycles.  相似文献   

2.
The polarity of a semiconducting molecule affects its intrinsic photophysical properties, which can be tuned by varying the molecular geometry. Herein, we developed a D3h-symmetric tricyanomesitylene as a new monomer which could be reticulated into a vinylene-linked covalent organic framework (g-C54N6-COF) via Knoevenagel condensation with another D3h-symmetric monomer 2,4,6-tris(4′-formyl-biphenyl-4-yl)-1,3,5-triazine. Replacing tricyanomesitylene with a C2v-symmetric 3,5-dicyano-2,4,6-trimethylpyridine gave a less-symmetric vinylene-linked COF (g-C52N6-COF). The octupolar conjugated characters of g-C54N6-COF were reflected in its scarce solvatochromic effects either in ground or excited states, and endowed it with more promising semiconducting behavior as compared with g-C52N6-COF, such as enhanced light-harvesting and excellent photo-induced charge generation and separation. Along with the matched energy level, g-C54N6-COF enabled the two-half reactions of photocatalytic water splitting with an average O2 evolution rate of 51.0 μmol h−1 g−1 and H2 evolution rate of 2518.9 μmol h−1 g−1. Such values are among the highest of state-of-the-art COF photocatalysts.  相似文献   

3.
于潇涵  黄伟  李彦光 《化学学报》2022,80(11):1494-1506
通过模拟自然界光合作用, 将太阳能转化为方便存储的化学能是缓解未来能源短缺和环境污染问题的理想途径之一. 二维共价有机框架材料(2D COFs)是近年来发展起来的一类新型有机半导体材料, 具有结晶度高、结构精确以及化学组分灵活可调等优势, 在光催化领域展现出巨大应用潜力, 受到了研究者们的广泛关注. 对2D COFs的可控制备以及电子结构调控方法进行了系统总结, 并重点介绍了它们在光催化水分解、CO2还原以及H2O2合成领域的最近研究进展, 讨论了材料结构和催化性能之间的关系, 最后对2D COFs在光催化应用领域存在的机遇和挑战进行了展望.  相似文献   

4.
Porous crystalline materials, such as covalent organic frameworks (COFs), have emerged as some of the most important materials over the last two decades due to their excellent physicochemical properties such as their large surface area and permanent, accessible porosity. On the other hand, thiophene derivatives are common versatile scaffolds in organic chemistry. Their outstanding electrical properties have boosted their use in different light-driven applications (photocatalysis, organic thin film transistors, photoelectrodes, organic photovoltaics, etc.), attracting much attention in the research community. Despite the great potential of both systems, porous COF materials based on thiophene monomers are scarce due to the inappropriate angle provided by the latter, which hinders its use as the building block of the former. To circumvent this drawback, researchers have engineered a number of thiophene derivatives that can form part of the COFs structure, while keeping their intrinsic properties. Hence, in the present minireview, we will disclose some of the most relevant thiophene-based COFs, highlighting their basic components (building units), spectroscopic properties and potential light-driven applications.  相似文献   

5.
高效合成和功能性基团的引入是当前有机微孔聚合物材料研究的热点. 采用强质子酸催化的腈基三聚环化反应, 室温合成制备了一系列带有不同取代基的芴基共价三嗪骨架聚合物(FCTF1~FCTF3), 系统研究了取代基的变化对所得材料光学性能、多孔性能及CO2吸附能力的影响. 其中乙基取代的聚合物FCTF2具有最高的BET比表面积(621 m2/g)和CO2吸附能力(1.8 mmol/g, 273 K/1.1 bar). 该研究有助于加深对有机微孔聚合物结构与性能关系的理解, 对该类材料的分子设计有借鉴意义.  相似文献   

6.
Many sophisticated chemical and physical properties of porous materials strongly rely on the presence of the metal ions within the structures. Whereas homogeneous distribution of metals is conveniently realized in metal–organic frameworks (MOFs), the limited stability potentially restricts their practical implementation. From that perspective, the development of metal–covalent organic frameworks (MCOFs) may address these shortcomings by incorporating active metal species atop highly stable COF backbones. This Minireview highlights examples of MCOFs that tackle important issues from their design, synthesis, characterization to cutting‐edge applications.  相似文献   

7.
Covalent organic frameworks (COFs) are an extensively studied class of porous materials, which distinguish themselves from other porous polymers in their crystallinity and high degree of modularity, enabling a wide range of applications. COFs are most commonly synthesized solvothermally, which is often a time-consuming process and restricted to well-soluble precursor molecules. Synthesis of polyimide-linked COFs (PI-COFs) is further complicated by the poor reversibility of the ring-closing reaction under solvothermal conditions. Herein, we report the ionothermal synthesis of crystalline and porous PI-COFs in zinc chloride and eutectic salt mixtures. This synthesis does not require soluble precursors and the reaction time is significantly reduced as compared to standard solvothermal synthesis methods. In addition to applying the synthesis to previously reported imide COFs, a new perylene-based COF was also synthesized, which could not be obtained by the classical solvothermal route. In situ high-temperature XRPD analysis hints to the formation of precursor–salt adducts as crystalline intermediates, which then react with each other to form the COF.  相似文献   

8.
Three isostructural covalent organic frameworks (COFs) with either methoxyl, hydroxyl, or both groups on the channel wall, are synthesized and served as metal-free heterogeneous catalysts for chemical fixation of CO2. Among them, the COF decorated with both hydroxyl and methoxyl groups named OMe-OH-TPBP-COF exhibits the highest catalytic activity and efficiency for CO2 cycloaddition under mild conditions.  相似文献   

9.
王涛  赵璐  王科伟  白云峰  冯锋 《化学学报》2021,79(5):600-613
共价有机框架(covalentorganicframeworks,COFs)是近年来开发的一种由有机单元连接而成的高结晶性多孔聚合物,由于具有良好的孔隙率、模块性、结晶性和生物相容性等特点在肿瘤治疗中显示出了良好的应用前景.本综述总结了已报道的COFs制备方法,包括溶剂热合成法、机械化学合成法、微波合成法、离子热合成法、界面合成法、室温合成法和纳米尺度COFs的合成方法,并根据对肿瘤作用机理的差异,将用于肿瘤治疗的COFs纳米载药系统归纳为药物化疗、光热治疗、光动力学治疗和联合治疗.此外还讨论了COFs在肿瘤治疗领域所面临的主要挑战和发展趋势.  相似文献   

10.
共价有机框架(Covalent Organic Frameworks, COFs)是一种新型的多孔材料,具有结构规整、骨架稳定、孔径结构可调等特点,被视为固定化酶的理想载体。我们主要总结了近10年来COFs材料作为载体,通过物理吸附、共价连接、包埋的固定化策略制备固定化酶的研究进展与应用,并讨论了COFs材料在酶固定化领域所面临的机遇和挑战。  相似文献   

11.
A novel type of ionic covalent organic framework (ICOF), which contains sp3 hybridized boron anionic centers and tunable countercations, was constructed by formation of spiroborate linkages. These ICOFs exhibit high BET surface areas up to 1259 m2 g?1 and adsorb a significant amount of H2 (up to 3.11 wt %, 77 K, 1 bar) and CH4 (up to 4.62 wt %, 273 K, 1 bar). Importantly, the materials show good thermal stabilities and excellent resistance to hydrolysis, remaining nearly intact when immersed in water or basic solution for two days. The presence of permanently immobilized ion centers in ICOFs enables the transportation of lithium ions with room‐temperature lithium‐ion conductivity of 3.05×10?5 S cm?1 and an average Li+ transference number value of 0.80±0.02. Our approach thus provides a convenient route to highly stable COFs with ionic linkages, which can potentially serve as absorbents for alternative energy sources such as H2, CH4, and also as solid lithium electrolytes/separators for the next‐generation lithium batteries.  相似文献   

12.
A strategy is presented for the synthesis of crystalline porous covalent organic frameworks via topology-templated polymerization. The template is based on imine-linked frameworks and their (001) facets seed the C=C bond formation reaction to constitute 2D sp2 carbon-conjugated frameworks. This strategy is applicable to templates with different topologies, enables designed synthesis of frameworks that cannot be prepared via direct polymerization, and creates a series of sp2 carbon frameworks with tetragonal, hexagonal, and kagome topologies. The sp2 carbon frameworks are highly luminescent even in the solid state and exhibit topology-dependent π transmission and exciton migration; these key fundamental π functions are unique to sp2 carbon-conjugated frameworks and cannot be accessible by imine-linked frameworks, amorphous analogues, and 1D conjugated polymers. These results demonstrate an unprecedented strategy for structural and functional designs of covalent organic frameworks.  相似文献   

13.
Covalent organic frameworks (COFs) are attractive materials receiving increasing interest in the literature due to their crystallinity, large surface area, and pore uniformity. Their properties can be tailored towards specific applications by judicious design of COF building blocks, giving access to tailor-made pore sizes and surfaces. In this Concept article, developments in the field of COFs that have allowed these materials to be explored for contaminant adsorption are discussed. Strategies to obtain water-stable materials with highly ordered structures and large surface areas are reviewed. Post-synthetic modification approaches, by which pore surfaces can be tuned to target specific contaminants, are described. Recent advances in COF formulations, crucial for future implementation in adsorption devices, are highlighted. At the end, future challenges which need to be addressed to allow for the deployment of COFs for the capture of water contaminants will be discussed.  相似文献   

14.
付先彪  喻桂朋 《化学进展》2016,28(7):1006-1015
共价有机框架材料(covalent organic frameworks, COF)是功能材料领域研究的热点之一。COF具有孔道结构高度有序、孔径可调、比表面积较大、合成方法多样和易于功能化修饰等优点,是一类新兴的多相催化剂。目前,COF催化剂主要设计思路是:基于“自下而上”策略将非金属催化活性中心嵌入材料骨架来构筑本征型COF催化剂,或者以COF为载体,通过后修饰方式负载金属颗粒或离子构建多相催化剂。鉴于COF以上优势,预计COF催化剂在多相催化和手性催化领域中的应用也将取得更大的进展。本文综述了COF催化剂的合成和功能化策略,并展望了COF在多相催化领域中的应用前景。  相似文献   

15.
16.
Two-dimensional covalent organic frameworks were synthesized in high yields by polycondensation in nonvolatile ionic liquids. The resulting crystallites are highly porous and exhibit exceptional capability of removing bisphenol A from water. The one reported is a general method to synthesize microporous and mesoporous frameworks, it allows to achieve regular macroscopic shapes, and it is effective in a wide range of reaction temperatures.  相似文献   

17.
以自制的磁性共价有机框架材料(COF)为吸附剂,采用静态吸附法研究了其对甲基橙(MO)和茜素绿(AG-25)的吸附行为。 结果表明,在25 ℃,pH值6~8的条件下,磁性COF对两种阴离子染料的的吸附量分别为997和1314 mg/g。 两种染料的吸附等温线符合Langmuir等温吸附模型,表明吸附过程为单层吸附;吸附动力学均符合准二级动力学模型,说明吸附过程以化学吸附为主。 磁性COF对水体中的阴离子染料体现出高吸附量和快速吸附的特点,具有潜在的价值。  相似文献   

18.
共价有机框架(Covalent Organic Frameworks,COFs)是一类由有机结构单元通过共价键连接形成的多孔框架晶体材料,具有密度低、比表面积大和热稳定性高等特点,在分子吸附与分离、传感、催化、光电器件等领域存在着广阔的应用前景.近年来,基于其固有结构特点,二维COFs在能源领域中的应用潜力也逐渐引起了科学界的关注.本文主要综述了二维COFs材料在能源存储(锂离子电池、锂硫电池、超级电容器、燃料电池)和能源转化(水分解反应以及CO2还原反应)等方面的研究进展,并对其研究前景进行了展望.  相似文献   

19.
Intermolecular charge transfer (ICT) effect has been widely studied in both small molecules and linear polymers. Covalently-bonded donor-acceptor pairs with tunable bandgaps and photoelectric properties endow these materials with potential applications in optoelectronics, fluorescent bioimaging, and sensors, etc. However, owing to the lack of charge transfer pathway or effective separation of charge carriers, unfavorable charge recombination gives rise to inevitable energy loss. Covalent organic frameworks (COFs) can be mediated with various geometry- and property-tailored building blocks, where donor (D) and acceptor (A) segments are connected by covalent bonds and can be finely arranged to form highly ordered networks (namely D−A COFs). The unique structural features of D−A COFs render the formation of segregated D−A stacks, thus provides pathways and channels for effective charge carriers transport. This review highlights the significant progress on D−A COFs over the past decade with emphasis on design principles, growing structural diversities, and promising application potentials.  相似文献   

20.
The effective capture and storage of volatile molecular iodine from nuclear waste is of great significance. Covalent organic frameworks (COFs) are a class of extended crystalline porous polymers that possess unique architectures with high surface areas, long-range order, and permanent porosity. Substantial efforts have been devoted to the design and synthesis of COF materials for the capture of radioactive iodine. In this review, we first introduce research techniques for determining the mechanism of iodine capture by COF materials. Then, the influencing factors of iodine capture performance are classified, and the design principles and strategies for constructing COFs with potential for iodine capture are summarized on this basis. Finally, our personal insights on remaining challenges and future trends are outlined, in order to bring more inspiration to this hot topic of research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号