首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
General strategies for metal aerogel synthesis, including single-metal, transition-metal doped, multi-metal-doped, and nano-metal-doped carbon aerogel are described. In addition, the latest applications of several of the above-mentioned metal aerogels in electrocatalytic CO2 reduction are discussed. Finally, considering the possibility of future applications of electrocatalytic CO2 reduction technology, a vision for industrialization and directions that can be optimized are proposed.  相似文献   

2.
A surface reconstructing phenomenon is discovered on a defect-rich ultrathin Pd nanosheet catalyst for aqueous CO2 electroreduction. The pristine nanosheets with dominant (111) facet sites are transformed into crumpled sheet-like structures prevalent in electrocatalytically active (100) sites. The reconstruction increases the density of active sites and reduces the CO binding strength on Pd surfaces, remarkably promoting the CO2 reduction to CO. A high CO Faradaic efficiency of 93 % is achieved with a site-specific activity of 6.6 mA cm−2 at a moderate overpotential of 590 mV on the reconstructed 50 nm Pd nanosheets. Experimental and theoretical studies suggest the CO intermediate as a key factor driving the structural transformation during CO2 reduction. This study highlights the dynamic nature of defective metal nanosheets under reaction conditions and suggests new opportunities in surface engineering of 2D metal nanostructures to tune their electrocatalytic performance.  相似文献   

3.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

4.
One of the most effective ways to cope with the problems of global warming and the energy shortage crisis is to develop renewable and clean energy sources. To achieve a carbon-neutral energy cycle, advanced carbon sequestration technologies are urgently needed, but because CO2 is a thermodynamically stable molecule with the highest carbon valence state of +4, this process faces many challenges. In recent years, electrochemical CO2 reduction has become a promising approach to fix and convert CO2 into high-value-added fuels and chemical feedstock. However, the large-scale commercial use of electrochemical CO2 reduction systems is hindered by poor electrocatalyst activity, large overpotential, low energy conversion efficiency, and product selectivity in reducing CO2. Therefore, there is an urgent need to rationally design highly efficient, stable, and scalable electrocatalysts to alleviate these problems. This minireview also aims to classify heterogeneous nanostructured electrocatalysts for the CO2 reduction reaction (CDRR).  相似文献   

5.
Molecular catalysts (metal complexes), with molecularly defined uniform active sites and atomically precise structural tailorability allowing for regulating catalytic performance through metal- and ligand-centered engineering and elucidating reaction mechanisms via routine photoelectrochemical characterizations, have been increasingly explored for electrocatalytic CO2 reduction (ECR). However, their poor stability and low catalytic current density are undesirable for practical applications. Heterogenizing discrete molecular catalysts can potentially surmount these issues, and the resulting integrated catalysts largely share catalytical properties with their discrete molecular counterparts, which bridge the gap between heterogeneous and homogeneous catalysis and combine their advantages. This minireview surveys advances in design and regulation of molecular catalysts such as porphyrin, phthalocyanine, and bipyridine-based metal complexes and their integrated catalytic materials for selective ECR.  相似文献   

6.
采用温度控制的浸渍-热解法, 合成了以碳纳米管为载体的一系列铜单原子催化剂. 扩展X射线吸收精细结构(EXAFS)分析表明, 催化剂中的单原子铜位点分别由吡啶氮和吡咯氮配位. 电催化性能测试表明, 所制备催化剂可用于电催化二氧化碳生成一氧化碳, 由吡啶氮配位的铜单原子催化剂的反应选择性较差, 而由吡咯氮配位的铜单原子催化剂则具有更强的活性, CO法拉第效率在-0.70 V(vs. RHE)时可达到96.3%; 吡咯氮配位的铜单原子中心对于析氢反应具有更好的抑制效果.  相似文献   

7.
化石燃料的燃烧和其他人类活动排放了大量的CO2气体,引发了诸多环境问题。电催化CO2还原反应(CO2RR)可以储存间歇可再生能源,实现人为闭合碳循环,被认为是获得高附加值化学品和燃料的有效途径。电催化CO2RR涉及多个电子-质子转移步骤,其中*CO通常被认为是关键中间体。铜由于对*CO具有合适的吸附能,已被广泛证明是唯一能够有效地将CO2还原为碳氢化合物和含氧化合物的金属催化剂。然而,纯Cu稳定性差、产品选择性低、过电位高,阻碍了工业级多碳产品的生产。构筑Cu基串联催化剂是提高CO2RR性能的一种有前途的策略。本文首先介绍电催化CO2RR的反应路线和串联机理。然后,系统地总结铜基串联催化剂对电催化CO2RR的最新研究进展。最后,提出合理设计和可控合成新型电催化CO2RR串联催化剂面临的挑战和机遇。  相似文献   

8.
Through the combustion of fossil fuels and other human activities, large amounts of CO2 gas have been emitted into the atmosphere, causing many environmental problems, such as the greenhouse effect and global warming. Thus, developing and utilizing renewable clean energy is crucial to reduce CO2 emission and achieve carbon neutrality. The electrochemical CO2 reduction reaction (CO2RR) has been considered as an effective approach to obtain high value-added chemicals and fuels, which can store intermittent renewable energy and achieve the artificial carbon cycle. In addition, due to its multiple advantages, such as mild reaction conditions, tunable products, and simple implementation, electrochemical CO2RR has attracted extensive attention. Electrochemical CO2RR involves multiple electron–proton transfer steps to obtain multitudinous products, such as C1 products (CO, HCOOH, CH4, etc.) and C2 products (C2H4, C2H5OH, etc.). The intermediates, among which *CO is usually identified as the key intermediate, and reaction pathways of different products intersect, resulting in an extremely complex reaction mechanism. Currently, copper has been widely proven to be the only metal catalyst that can efficiently reduce CO2 to hydrocarbons and oxygenates due to its suitable adsorption energy for *CO. However, the low product selectivity, poor stability, and high overpotential of pure Cu hinder its use for the production of industrial-grade multi-carbon products. Tandem catalysts with multiple types of active sites can sequentially reduce CO2 molecules into desired products. When loaded onto a co-catalyst that can efficiently convert CO2 to *CO (such as Au and Ag), Cu acts as an electron donor owing to its high electrochemical potential. *CO species generated from the substrate can spillover onto the surface of electron-poor Cu due to the stronger adsorption and be further reduced to C2+ products. The use of Cu-based tandem catalysts for electrochemical CO2RR is a promising strategy for improving the performance of CO2RR and thus, has become a research hotspot in recent years. In this review, we first introduce the reaction routes and tandem mechanisms of electrochemical CO2RR. Then, we systematically summarize the recent research progress of Cu-based tandem catalysts for electrochemical CO2RR, including Cu-based metallic materials (alloys, heterojunction, and core-shell structures) as well as Cu-based framework materials, carbon materials, and polymer-modified materials. Importantly, the preparation methods of various Cu-based tandem catalysts and their structure–activity relationship in CO2RR are discussed and analyzed in detail. Finally, the challenges and opportunities of the rational design and controllable synthesis of advanced tandem catalysts for electrochemical CO2RR are proposed.  相似文献   

9.
The electrocatalytic CO2 reduction reaction (CO2RR) driven by renewable energy is an efficient approach to achieve the conversion and utilization of CO2. In this context, CO2RR has become an emerging research focus in the field of electrocatalysis over the past decade. While a large number of nanostructured catalysts have been developed to accelerate CO2RR, the tradeoff between activity and selectivity usually renders the overall electrocatalytic performance very poor. Beyond catalyst design, rationally designing electrolyzers is also of substantial importance for improving the CO2RR performance and achieving its scale-up for practical applications. To a large extent, the electrolyzer configuration determines the local reaction environment near an electrode by affecting the process conditions, thereby resulting in remarkably different electrocatalytic performances. To be techno-economically viable, the performance of CO2 electrolyzers is expected to be at least comparable to that of the current state-of-the-art proton exchange membrane (PEM) water electrolyzers, with regard to their activity, selectivity, and stability. Researchers have made great progress in the development of CO2 electrolyzers over the past few years, but they are also facing many issues and challenges. This review aims to provide an in-depth analysis of the research progress and status of current CO2 electrolyzers including H-cell, flow-cell, and membrane electrode assembly cell (MEA-cell) electrolyzers. Herein, operation at industrial current densities (> 200 mA∙cm−2) is set as a basis when these electrolyzers are discussed and compared in terms of the four main figures of merit (current density, Faradic efficiency, energy efficiency and stability) that describe the CO2RR performance of an electrolyzer. The advantages and drawbacks of each electrolyzer are discussed and highlighted with emphasis on the key achievements reported to date. Compared to conventional H-cell electrolyzers that work well in mechanistic studies, the newly developed electrolyzers using gas diffusion electrodes, both flow-cell and MEA-cell electrolyzers, are able to break the limitation of CO2 solubility in water and acquire industrial current densities. Although flow-cell electrolyzers have achieved current densities exceeding 1 A∙cm−2, they suffer from low energy efficiencies because of the significant iR drop and poor stability owing to the use of alkaline electrolytes. These issues can be overcome in the case of zero-gap MEA-cell electrolyzers with ion exchange membranes being as solid electrolytes. The anion exchange membrane (AEM)-based CO2 electrolyzers are at the center of the current research, as they demonstrate promising activity and selectivity toward specific CO2RR products and exhibit excellent stability for over thousands of hours in few cases. Meanwhile, the crossover of CO2 and liquid products from the cathode to the anode through the membrane tends to lower the utilization efficiency of the CO2 supplied to the AEM electrolyzers. MEA-cell electrolyzers using cation exchange membranes and bipolar membranes have also been explored; however, neither of them have shown satisfactory CO2RR performance. The development of new polymer electrolyte membranes and ionomers would help address these problems. While issues and challenges still exist, MEA-cell electrolyzers hold the greatest promise for practical applications. As concluding remarks, research strategies and opportunities for the future have been proposed to accelerate the development of CO2RR technology for practical applications and to deepen the mechanistic understanding behind improved performance. This review provides new insights into rational electrolyzer design and guidelines for researchers in this field.  相似文献   

10.
温室气体CO2的大量排放给全球气候造成潜在威胁,电化学还原CO2为有用的化工产品作为一种人为的碳循环的方式,拓展了新的利用CO2的可能性,并且是一种很有前景的显著改善环境、促进可持续发展的方法。然而,在转化CO2为有价值的产品过程中,最大的挑战是抑制析氢副反应的同时达不到高效率、高选择性。铜因其在电催化还原CO2过程中优异的催化性能而得到广泛关注。本文重点介绍了近年来电催化还原CO2的发展以及电化学转化CO2的优缺点,介绍了CO2RR的热力学与动力学研究并概述了Cu电极、Cu MOFs材料电极以及通过氧化、合金化、纳米化和表面修饰等方法修饰的铜电极的进展,但是电催化还原CO2的反应机理尚不太确定。最后,讨论了未来铜基电极催化剂高效率地选择性转化CO2会面临的挑战和可能研究的方向。  相似文献   

11.
采用不加表面活性剂的种子介导生长策略合成了具有针状结构的金纳米颗粒, 其针尖处的尖端电场效应能有效富集电解质阳离子并提高二氧化碳局部浓度, 从而提高催化剂的电流密度和一氧化碳选择性, 在 -0.6 V(vs. RHE)时的法拉第效率可以达到96%. 电化学性能测试结果表明, 其高选择性不仅来源于丰富的表面缺陷, 更主要源于其独特的针状结构所带来的尖端电场效应.  相似文献   

12.
光催化还原CO2技术在CO2的治理与利用方面有着潜在的应用价值和良好的开发前景。该文简要综述了近年来用于光催化还原CO2反应的TiO2光催化剂材料,包括纯TiO2催化剂、负载型TiO2催化剂、金属改性TiO2催化剂、半导体复合TiO2催化剂和有机光敏化TiO2催化剂等,并介绍了各类催化剂光催化还原CO2的反应性能。  相似文献   

13.
Bipolar membranes (BPMs) have emerged as a promising solution for mitigating CO2 losses, salt precipitation and high maintenance costs associated with the commonly used anion-exchange membrane electrode assembly for CO2 reduction reaction (CO2RR). However, the industrial implementation of BPM-based zero-gap electrolyzer is hampered by the poor CO2RR performance, largely attributed to the local acidic environment. Here, we report a backbone engineering strategy to improve the CO2RR performance of molecular catalysts in BPM-based zero-gap electrolyzers by covalently grafting cobalt tetraaminophthalocyanine onto a positively charged polyfluorene backbone (PF-CoTAPc). PF-CoTAPc shows a high acid tolerance in BPM electrode assembly (BPMEA), achieving a high FE of 82.6 % for CO at 100 mA/cm2 and a high CO2 utilization efficiency of 87.8 %. Notably, the CO2RR selectivity, carbon utilization efficiency and long-term stability of PF-CoTAPc in BPMEA outperform reported BPM systems. We attribute the enhancement to the stable cationic shield in the double layer and suppression of proton migration, ultimately inhibiting the undesired hydrogen evolution and improving the CO2RR selectivity. Techno-economic analysis shows the least energy consumption (957 kJ/mol) for the PF-CoTAPc catalyst in BPMEA. Our findings provide a viable strategy for designing efficient CO2RR catalysts in acidic environments.  相似文献   

14.
We present herein a Cp*Co(III)‐half‐sandwich catalyst system for electrocatalytic CO2 reduction in aqueous acetonitrile solution. In addition to an electron‐donating Cp* ligand (Cp*=pentamethylcyclopentadienyl), the catalyst featured a proton‐responsive pyridyl‐benzimidazole‐based N,N‐bidentate ligand. Owing to the presence of a relatively electron‐rich Co center, the reduced Co(I)‐state was made prone to activate the electrophilic carbon center of CO2. At the same time, the proton‐responsive benzimidazole scaffold was susceptible to facilitate proton‐transfer during the subsequent reduction of CO2. The above factors rendered the present catalyst active toward producing CO as the major product over the other potential 2e/2H+ reduced product HCOOH, in contrast to the only known similar half‐sandwich CpCo(III)‐based CO2‐reduction catalysts which produced HCOOH selectively. The system exhibited a Faradaic efficiency (FE) of about 70% while the overpotential for CO production was found to be 0.78 V, as determined by controlled‐potential electrolysis.  相似文献   

15.
To date, copper is the only monometallic catalyst that can electrochemically reduce CO2 into high value and energy-dense products, such as hydrocarbons and alcohols. In recent years, great efforts have been directed towards understanding how its nanoscale structure affects activity and selectivity for the electrochemical CO2 reduction reaction (CO2RR). Furthermore, many attempts have been made to improve these two properties. Nevertheless, to advance towards applied systems, the stability of the catalysts during electrolysis is of great significance. This aspect, however, remains less investigated and discussed across the CO2RR literature. In this Minireview, the recent progress on understanding the stability of copper-based catalysts is summarized, along with the very few proposed degradation mechanisms. Finally, our perspective on the topic is given.  相似文献   

16.
Electrochemical reduction of carbon dioxide (CO2) into value‐added chemicals is a promising strategy to reduce CO2 emission and mitigate climate change. One of the most serious problems in electrocatalytic CO2 reduction (CO2R) is the low solubility of CO2 in an aqueous electrolyte, which significantly limits the cathodic reaction rate. This paper proposes a facile method of catholyte‐free electrocatalytic CO2 reduction to avoid the solubility limitation using commercial tin nanoparticles as a cathode catalyst. Interestingly, as the reaction temperature rises from 303 K to 363 K, the partial current density (PCD) of formate improves more than two times with 52.9 mA cm?2, despite the decrease in CO2 solubility. Furthermore, a significantly high formate concentration of 41.5 g L?1 is obtained as a one‐path product at 343 K with high PCD (51.7 mA cm?2) and high Faradaic efficiency (93.3 %) via continuous operation in a full flow cell at a low cell voltage of 2.2 V.  相似文献   

17.
通过电化学的方法将CO2转化为CO是解决资源和环境问题的经济友好的策略。在本次工作中,利用湿化学方法制备了铌/碳的前驱体,在NH3和Ar氛围下煅烧后分别转化为Nb4N5/C和Nb2O5/C。当氮化温度达到700℃时,制备的Nb4N5/C表现出优异的催化活性,在CO2饱和的0.5 mol·L-1的NaCl溶液中,电解电位为-0.83V(RHE)时,CO的法拉第效率最高,达到57%。实验结果表明,Nb4N5/C的催化活性与Nb4N5中的N掺杂有关。  相似文献   

18.
The reduction of carbon dioxide (CO2) into value-added fuels using an electrochemical method has been regarded as a compelling sustainable energy conversion technology. However, high-performance electrocatalysts for CO2 reduction reaction (CO2RR) with high formate selectivity and good stability need to be improved. Earth-abundant Bi has been demonstrated to be active for CO2RR to formate. Herein, we fabricated an extremely active and selective bismuth nanosheet (Bi-NSs) assembly via an in situ electrochemical transformation of (BiO)2CO3 nanostructures. The as-prepared material exhibits high activity and selectivity for CO2RR to formate, with nearly 94% faradaic efficiency at −1.03 V (versus reversible hydrogen electrode (vs. RHE)) and stable selectivity (>90%) in a large potential window ranging from −0.83 to −1.18 V (vs. RHE) and excellent durability during 12 h continuous electrolysis. In addition, the Bi-NSs based CO2RR/methanol oxidation reaction (CO2RR/MOR) electrolytic system for overall CO2 splitting was constructed, evidencing the feasibility of its practical implementation.  相似文献   

19.
To date, copper is the only monometallic catalyst that can electrochemically reduce CO2 into high value and energy‐dense products, such as hydrocarbons and alcohols. In recent years, great efforts have been directed towards understanding how its nanoscale structure affects activity and selectivity for the electrochemical CO2 reduction reaction (CO2RR). Furthermore, many attempts have been made to improve these two properties. Nevertheless, to advance towards applied systems, the stability of the catalysts during electrolysis is of great significance. This aspect, however, remains less investigated and discussed across the CO2RR literature. In this Minireview, the recent progress on understanding the stability of copper‐based catalysts is summarized, along with the very few proposed degradation mechanisms. Finally, our perspective on the topic is given.  相似文献   

20.
FeIII chloride tetrakis(pentafluorophenyl)porphyrin ( 1 ) is known to have poor electrocatalytic activity for the CO2-to-CO conversion in dimethylformamide. In this work, we re-examined Fe porphyrin 1 as a CO2 reduction catalyst in various solvents. Our results show that 1 displays fairly high electrocatalytic CO2-to-CO activity in acetonitrile with a turnover frequency (TOF) up to 4.2×104 s−1. On the other hand, 1 shows a modest activity in propylene carbonate, and is inefficient to catalyze CO2 reduction in benzonitrile, dimethylformamide, and tetrahydrofuran. Several solvent effects were considered, but none of these effects alone can explain the observed large activity difference of 1 for CO2 reduction in these solvents. Based on the results, it is suggested that more care should be paid when comparing different CO2 reduction catalysts because solvent effects are significant and are underevaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号