首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this article, the synthesis of a novel and highly efficient recyclable and reusable heterogeneous nanocatalyst has been reported via the functionalizing of the Fe3O4-magnetized graphene oxide nanosheets with the N6-Schiff base Cu (II) complex (GO/Fe3O4@SPNC). The structure of this novel nanocatalyst was determined by different analytical techniques such as FTIR, FE-SEM, TEM, TGA-DTG, and VSM. The catalytic activity of the synthesized GO/Fe3O4@SPNC nanocatalyst was explored for the synthesis of several new 2H-pyrido[3′,2′:6,7]pyrano[2,3-d]pyrimidine-7-carbonitrile derivatives with excellent yields. All new derivatives were fully identified by various spectral (1H NMR, 13C NMR, FT-IR, ESI-MS) analyses. In addition, this nanocatalyst carried out satisfactory catalytic maintenance of activity and high chemical stability in the titled reactions after seven-time of recycling without substantial loss of leaching.  相似文献   

2.
采用静电自组装方法,分两步合成Fe(OH)3/GO前驱体(GO:氧化石墨烯),再通过水热反应和600 ℃高纯氮气气氛下煅烧,获得了Fe3O4/石墨烯复合材料. 通过X射线衍射(XRD)、扫描电镜(SEM)、高分辨透射电镜(HRTEM)、拉曼(Raman)光谱等多种分析,发现该复合材料具有三维多孔石墨烯网络结构. 把合成的这种Fe3O4/石墨烯复合材料作为锂离子电池负极材料,电化学测试结果表明其具有优良的电化学性能:首次放电容量为1390 mAh·g-1,50次循环后容量为819 mAh·g-1. 通过对比实验表明,三维石墨烯网络结构的形成对复合材料的电化学循环稳定性起着关键作用.  相似文献   

3.
Abstract

A hybrid system involving graphene oxide (GO), magnetic oxide (Fe3O4), acrylamide and dicyandiamide was prepared via amine functionalization of GO/Fe3O4 by means of covalent bonding with acrylamide and subsequent reaction with dicyandiamide to provide a multinitrogen containing polymer on the surface of GO. This hybrid system was utilized as a heterogeneous catalyst support for immobilizing Pd nanoparticles to provide the hybrid, Pd@GO/Fe3O4/PAA/DCA. This nano-Pd composite was characterized using Fourier transform infrared, transmission electron microscopy, scanning electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, X-ray diffraction, and ICP techniques and used for promoting Sonogashira cross-coupling under mild reaction conditions. This heterogeneous and magnetic catalyst was easily separated by external magnet and was reused in a model reaction, efficiently up to six times with slight loss of catalytic activity and Pd leaching, showing the suitability of GO/Fe3O4/PAA/DCA for embedding Pd nanoparticles. To check the effect of the number of surface nitrogens of the polymeric chain on the catalytic performance, the activity of the catalyst was compared with Pd@GO/Fe3O4/PAA; increased number of the surface nitrogens on the chain polymer leads to higher loading of Pd and lower the Pd leaching.  相似文献   

4.
Magnetic graphene oxide functionalized with sulfonic acid (Fe3O4‐GO‐SO3H) was used as a new recyclable nanocatalyst for one‐pot synthesis of N‐aryl‐2‐amino‐1,6‐naphthyridine derivatives under solvent free conditions. The catalyst could be easily recovered from the reaction mixture by an external magnet and reused without significant decrease in activity even after 4 runs. This nanocatalyst exhibited better activities to other commercially available sulfonic acid catalysts.  相似文献   

5.
Triclosan is broadly utilized as preservative or antiseptic in various cosmetic and personal care products. It becomes hazardous for environmental safety and human health more than a certain concentration. In this research, graphene oxide (GO) nanosheets were prepared by composing Fe3O4@Au nanostructure decorated GO together with polypyrrole (PPy) (Fe3O4@Au‐PPy/GO nanocomposite) in a facile way. The composite excellent increased the electrochemical response, presenting a high sensitive electrochemical method for triclosan detection. The synthesized Fe3O4@Au‐PPy/GO nanocomposite was characterized for its morphological, magnetically and structural properties by FESEM‐mapping, TEM, and XRD. The Fe3O4@Au‐PPy/GO nanocomposites modified glassy carbon electrodes (GCE), Fe3O4@Au‐PPy/GO GCE, showed a higher sensitivity good stability, reproducibility, lower LOD (2.5×10?9 M) and potential practical application in electrochemical detection of triclosan under optimized experimental conditions.  相似文献   

6.
In this work, poly(α-amino acid)-Cu(II) complex immobilized on magnetite graphene oxide (GO/Fe3O4@PAA-Cu-complex) was prepared via a multistep synthesis and employed as an efficient, heterogeneous, magnetically recyclable nanocatalyst for one-pot, three component synthesis of 5- and 1-substituted tetrazoles using different substrates including benzaldehydes, benzonitriles, and anilines in mild conditions. The different approaches were mechanically investigated and compared. The catalyst was fully characterized by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma (ICP), FE-SEM and TEM analyses. The magnetic nanocatalyst could be readily separated from the reaction mixture by an external magnet and reused for several times without significant loss of catalytic activity. Also, the spectroscopic analysis revealed the stability and durability of the catalyst. Finally, the chemoselectivity of the method was investigated by the various combinations of aldehyde, nitrile, and oxime.  相似文献   

7.
In this work, the photocatalytic activity of the synthesized graphene oxide (GO)‐Fe3O4/TiO2 mesoporous photocatalysts was evaluated using chlorpyrifos (CP) as a contaminant. The nano‐photocatalyst was characterized by X‐ray diffraction, field emission scanning electron microscopy with energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, and specific surface area by the Brunauer–Emmett–Teller method. Using visible light, the GO‐Fe3O4/TiO2 mesoporous photocatalyst was investigated on the degradation of CP pesticide. The GO‐Fe3O4/TiO2 photocatalyst displayed a good photocatalytic activity, which was achieving 97% of CP degradation after 60 min. Finally, experiments were performed to evaluate GO‐Fe3O4/TiO2 mesoporous nanocatalyst activity on repeated applications; after several uses, its photocatalytic activity was retained, which indicated stability.  相似文献   

8.
Graphene oxide ‐ Fe3O4 ‐ NH3+H2PW12O40 magnetic nanocomposite (GO/Fe3O4/HPW) was prepared by linking amino ‐ functionalized Fe3O4 nanoparticles (Fe3O4 ‐ NH2) on the graphene oxide (GO), and then grafting 12 ‐ tungstophosphoric acid (H3PW12O40) on the graphene oxide ‐ magnetite hybrid (GO ‐ Fe3O4 ‐ NH2). The obtained GO/Fe3O4/HPW nanocomposite was well characterized with different techniques such as FT ‐ IR, TEM, SEM, XRD, EDX, TGA ‐ DTA, AGFM, ICP and BET measurements. The used techniques showed that the graphene oxide layers were well prepared and the various stages of preparation of the GO/Fe3O4/HPW nanocomposites successfully completed. This new nanocomposite displayed excellent performance as a heterogeneous catalyst in the oxidation of alcohols with H2O2. The as ‐ prepared GO/Fe3O4/HPW catalyst was more stable and recyclable at least five times without significantly reducing its catalytic activity.  相似文献   

9.
In this work, a new nanocatalyst, Fe2W18Fe4@NiO@CTS, was synthesized by the reaction of sandwich‐type polyoxometalate (Fe2W18Fe4), nickel oxide (NiO), and chitosan (CTS) via sol–gel method. The assembled nanocatalyst was systematically characterized by FT‐IR, UV–vis, XRD, SEM, and EDX analysis. The catalytic activity of Fe2W18Fe4@NiO@CTS was tested on oxidative desulfurization (ODS) of real gasoline and model fuels. The experimental results revealed that the levels of sulfur content and mercaptan compounds of gasoline were lowered with 97% efficiency. Also, the Fe2W18Fe4@NiO@CTS nanocatalyst demonstrated an outstanding catalytic performance for the oxidation of dibenzothiophene (DBT) in the model fuel. The major factors that influence the desulfurization efficiency and the kinetic study of the ODS reactions were fully detailed and discussed. The probable ODS pathway was proposed via the electrophilic mechanism on the basis of the electrophilic characteristic of the metal‐oxo‐peroxo intermediates. The prepared nanocatalyst could be reused for 5 successive runs without any appreciable loss in its catalytic activity. As a result, the current study suggested the potential application of the Fe2W18Fe4@NiO@CTS hybrid nanocatalyst as an ideal candidate for removal of sulfur compounds from fuel.  相似文献   

10.
In this research, the main emphasis has been focused on the preparation of a novel Fe3O4-supported propane-1-sulfonic acid-grafted graphene oxide quantum dots (Fe3O4@GOQD-O-(propane-1-sulfonic acid)) that it was readily synthesized via a five-step procedure as a hitherto unreported magnetic nanocatalyst. This newly prepared Fe3O4@GOQD-O-(propane-1-sulfonic acid) nanocomposite was structurally well-established by different analytical techniques including Fourier transform infrared (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray (EDX), thermal gravimetric analysis (TGA), field emission gun-scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM) and vibrating sample magnetometer (VSM) analyses. The high catalytic performance of this nanocomposite was exhibited in one-pot synthesis of dihydropyrano[2,3-c]pyrazole and 4H-chromene derivatives under mild conditions. Low reaction times, excellent yields of the products, benignity of the catalyst, easy reaction work-up and magnetic recyclability of the catalyst are the main advantages of the present protocol. Also, our research indicated that the Fe3O4@GOQD-O-(propane-1-sulfonic acid) could be reused up to five times without considerable loss of catalytic activity.  相似文献   

11.
为了提高壳聚糖的多染料吸附性能并使其便于固液分离,采用共沉淀法制备了壳聚糖、磁铁矿纳米颗粒、氧化石墨烯复合磁性吸附剂(CS/Fe3O4/GO)。系统的结构表征显示,CS包覆的Fe3O4磁性纳米颗粒均匀地分布在GO的表面。CS/Fe3O4/GO具有高达42.5 emu·g-1的室温铁磁性,因此可在外加磁场中实现高效固液分离。研究表明,CS/Fe3O4/GO对亚甲基蓝(MB)、甲基橙(MO)和刚果红(CR)等多种染料具有良好的吸附性能,溶液的pH、初始浓度和吸附时间对其多染料吸附性能具有显著影响。在最佳条件下,CS/Fe3O4/GO对MB、MO和CR的吸附量分别达到210.6、258.6和308.9 mg·g-1。CS/Fe3O4/GO具有优异的循环利用性能,经5次循环后仍能保留90%以上的原始吸附量。采用吸附等温线和吸附动力学对...  相似文献   

12.
A novel magnetic nanocomposite of Au-Ag nanoparticles anchored on Fe3O4/graphene oxide spheres (Fe3O4/GO/Au-Ag) was successfully fabricated by the layer-by-layer assembly technique. The prepared Fe3O4/GO/Au-Ag was fully characterized by Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM), energy-dispersive x-ray spectroscopy (EDS), transmission electron microscopy (TEM), and Raman spectroscopy. This nanocomposite showed unique catalytic performance for the synthesis of Spiro[indoline-3,5′-pyrido[2,3-d:6,5-d’]dipyrimidine]-pentaone derivatives by the three-component condensation reaction of isatins, barbituric acids and 6-amino uracil at room temperature and in aqueous media. The significant advantages of this protocol include highly stable, easily separable and reusable catalyst, simple operation, environmental friendliness and excellent yields.  相似文献   

13.
Low cost, high activity and selectivity, convenient separation, and increased reusability are the main requirements for noble‐metal‐nanocatalyst‐catalyzed reactions. Despite tremendous efforts, developing noble‐metal nanocatalysts to meet the above requirements remains a significant challenge. Here we present a general strategy for the preparation of strongly coupled Fe3O4 and palladium nanoparticles (PdNPs) to graphene sheets by employing polyethyleneimine as the coupling linker. Transmission electron microscopic images show that Pd and Fe3O4 nanoparticles are highly dispersed on the graphene surface, and the mean particle size of Pd is around 3 nm. This nanocatalyst exhibits synergistic catalysis by Pd nanoparticles supported on reduced graphene oxide (rGO) and a tertiary amine of polyethyleneimine (Pd/Fe3O4/PEI/rGO) for the Tsuji–Trost reaction in water and air. For example, the reaction of ethyl acetoacetate with allyl ethyl carbonate afforded the allylated product in more than 99 % isolated yield, and the turnover frequency reached 2200 h?1. The yield of allylated products was 66 % for Pd/rGO without polyethyleneimine. The catalyst could be readily recycled by a magnet and reused more than 30 times without appreciable loss of activity. In addition, only about 7.5 % of Pd species leached off after 20 cycles, thus rendering this catalyst safer for the environment.  相似文献   

14.
为了提高壳聚糖的多染料吸附性能并使其便于固液分离,采用共沉淀法制备了壳聚糖、磁铁矿纳米颗粒、氧化石墨烯复合磁性吸附剂(CS/Fe3O4/GO)。系统的结构表征显示,CS包覆的Fe3O4磁性纳米颗粒均匀地分布在GO的表面。CS/Fe3O4/GO具有高达42.5 emu·g-1的室温铁磁性,因此可在外加磁场中实现高效固液分离。研究表明,CS/Fe3O4/GO对亚甲基蓝(MB)、甲基橙(MO)和刚果红(CR)等多种染料具有良好的吸附性能,溶液的pH、初始浓度和吸附时间对其多染料吸附性能具有显著影响。在最佳条件下,CS/Fe3O4/GO对MB、MO和CR的吸附量分别达到210.6、258.6和308.9 mg·g-1。CS/Fe3O4/GO具有优异的循环利用性能,经5次循环后仍能保留90%以上的原始吸附量。采用吸附等温线和吸附动力学对CS/Fe3O4/GO的多染料吸附性能进行了拟合分析,并详细讨论了其吸附机理。  相似文献   

15.
A new and heterogeneous copper complex immobilized on graphene oxide (GO) was prepared. This was achieved through organic functionalization of GO using 1,8-diamino-3,6-dioxaoctane (DADO) and then inorganic coordination of copper on the edges and basal plane of the functionalized GO (GO-DADO-Cu), which was reduced to Cu(0). The chemical structure of the prepared nanocatalyst was analyzed using various techniques. Most of the analyses confirmed the successful anchoring of copper and organic ligand on the GO surface. Moreover, the synthesized nanocatalyst has shown high catalytic activity in the synthesis of β-hydroxy-1,2,3-triazole derivatives under mild reaction conditions (water and room temperature) resulting in good to excellent yields.  相似文献   

16.
We studied sensor application of a graphene oxide and hematite (α‐Fe2O3/GO) composite electrode well‐characterized by the SEM and XRD. Through differential pulse voltammetry (DPV), oxidation of dexamethasone sodium phosphate (DSP) was studied at the surface of a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) and the α‐Fe2O3/GO composite. The values of the transfer coefficient (α) and the diffusion coefficient (D) of DSP were 0.5961 and 4.71×10?5 cm2 s?1 respectively. In the linear range of 0.1–50 μM, the detection limit (DL) was 0.076 μM. In the second step, a GCE was modified with α‐Fe2O3/GO composite and the DSP measurement step was repeated to analyzed and compare the effects of hematite nanoparticles present on graphene oxide surfaces. According to the results, α and D were 0.52 and 2.406×10?4 cm2 s?1 respectively and the DL was 0.046 μM in the linear range of 0.1–10.0 μM. The sensor is simple, inexpensive and uses blood serum.  相似文献   

17.
Betti base‐modified Fe3O4 nanoparticles have been successfully designed and synthesized for the first time through the condensation of Fe3O4 magnetic nanoparticles coated by (3‐aminopropyl)triethoxysilane with β‐naphthol and benzaldehyde. Their application as a novel magnetic nanocatalyst in the Knoevenagel condensation and also application to immobilization of palladium nanoparticles for Suzuki coupling reactions have been investigated which opens a new field for application of Betti base derivatives in organic transformations. The synthesized inorganic–organic hybrid nanocatalyst has been fully been characterized using Fourier transform infrared, X‐ray diffraction, vibrating sample magnetometry, transmission and scanning electron microscopies, energy‐dispersive X‐ray, wavelength‐dispersive X‐ray and X‐ray photoelectron spectroscopies and inductively coupled plasma techniques. The catalyst was easily separated with the assistance of an external magnet from the reaction mixture and reused for several consecutive runs with no significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

19.
The easy synthesis of graphene oxide (GO)-supported manganese dioxide (MnO2) nanoparticles as a stable heterogeneous nanocatalyst (MnO2@GO) is described. This catalyst was investigated in the synthesis of 1,2,4-oxadiazoles from amidoximes and aldehydes via a cyclization and oxidation process. The nanocomposite was prepared and characterized using various techniques. The catalytic application of the nanocomposite was examined in the reaction of a variety of aldehydes with aliphatic and aromatic amidoximes. The stable and robust catalyst was recycled for seven consecutive runs without a significant decrease in the catalytic activity.  相似文献   

20.
A novel Cu0.5Co0.5Fe2O4@Arg–GO catalytic system was successfully prepared by immobilization of copper substituted cobalt ferrite nanoparticles on arginine–grafted graphene oxide nanosheets, in which ferrite moiety acts as an oxidation catalyst and arginine has the role of base catalyst. Also, arginine amino acid was used to modify the surface of graphene oxide nanosheets which the prepared support can improve dispersion and uniform loading of nanoparticles. The prepared nanocomposite was characterized by flame atomic absorption spectroscopy (FAAS), inductively coupled plasma optical emission spectrometer (ICP–OES), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FT–IR), ultraviolet–visible spectroscopy (UV–vis), Raman spectroscopy, thermogravimetric analysis (TGA), x–ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The prepared Cu0.5Co0.5Fe2O4@Arg–GO nanocomposite was used as an efficient catalyst for one–pot tandem oxidative synthesis of 2–phenylbenzimidazole derivatives in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号