首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we have prepared a new Cu(II) Schiff base complex supported onto the surface of modified Fe3O4 nanoparticles as highly stable, heterogeneous and magnetically recyclable nanocatalyst for the selective aerobic oxidation of different alcohols. The structure, morphology, chemical composition and magnetic property of the nanocatalyst and its precursors were characterized using FT‐IR, TGA, AAS, ICP‐AES, XRD, SEM, EDS, VSM and N2 adsorption–desorption analyses. Characterization results exhibited the uniform spherical morphology for nanocatalyst and its precursors. A promising eco‐friendly method with short reaction time and high conversion and selectivity for oxidation of various primary and secondary alcohols under O2 atmosphere condition was achieved. The synthesized nanocatalyst could be recovered easily by applying an external magnetic field and reused for least eight subsequent reaction cycles with only negligible deterioration in catalytic performance.  相似文献   

2.
Graphene oxide was an effective supporting material for immobilizing a dioxomolybdenum Schiff base complex via covalent interaction. The large surface of graphene oxide plays important roles to obtain a good degree of catalytic reaction. Catalytic capacity of the graphene-bound dioxomolybdenum Schiff base complex was investigated for the oxidation of various sulfides to sulfoxide compounds using hydrogen peroxide urea as an oxidant. The catalyst was characterized by various techniques including XRD, FTIR, TGA, SEM, UV–vis, and ICP-AES. The immobilized complex was very efficient with the extra benefits of easy recovery and recycling of the heterogeneous catalyst. The graphene oxide bound dioxomolybdenum Schiff base complex was reused for several runs without meaningful loss in catalytic activity.  相似文献   

3.
In this work, we report the efficient, high stable copper(II) complexes intercalated graphene oxide (GO) used as green catalysts for copper(II) complex mediated click reaction. Copper(II) Bis(2,2′-bipyridine) [CuII (bpy)2] (C1) and Copper(II) Bis(1,10-phenanthroline) [CuII (phen)2] (C2) have synthesized for the intercalation of corresponding nanocomposites with GO, [GO@CuII (bpy)2] (GO-C1) and [GO@CuII (phen)2] (GO-C2). The noncovalent interaction of complexes supported on the surface of the GO nanosheets proves as an evident active site to facilitate the enhanced catalytic activity of copper-catalyzed alkyne azide cycloaddition (CuIIAAC) reaction for the isolation of 1,4-disubstituted-1,2,3-triazoles as click products in shorter reaction time with 80%–91% yield (five examples). The X-ray diffraction (XRD) pattern of these composites shows the enhanced interlayers d-spacing range of 1.01–1.12 nm due to the intercalation of copper(II) complexes in between the GO basal planes and characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), Raman, UV, scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The as-prepared nanocomposites were employed for the typical click reactions using the substrates of azide and acetylene. These classes of composite materials can be referred to recyclable, heterogeneous, green catalysts with high atom economy and could also be used for the isolation of click products in biomolecules.  相似文献   

4.
Cobalt(II), iron(III) or oxovanadium(II) Schiff base metal complexes have been covalently grafted onto graphene oxide ( GO ) previously functionalized with 3‐aminopropyltriethoxysilane. Potential catalytic behaviors were tested in the epoxidation of styrene, using air as the oxidant. The catalysts were characterized using infrared (IR) and Raman spectroscopies, thermogravimetric analyses, inductively coupled plasma atomic emission spectrometry (ICP‐AES), X‐ray diffraction, nitrogen adsorption–desorption, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). IR spectroscopy, thermogravimetric analyses and ICP‐AES confirmed the successful incorporation of the metal Schiff base complexes onto GO . X‐ray diffraction, nitrogen adsorption–desorption, Raman spectroscopy, SEM and TEM showed the intact structure of the GO . Co-GO and Fe-GO showed high styrene conversion (90.8 versus 86.7%) and epoxide selectivity (63.7 versus 51.4%). Nevertheless, VO-GO showed poorer catalytic performance compared with Co-GO and Fe-GO . The recycling results of these heterogeneous catalysts showed good recoverability without significant loss of activity and selectivity within four successive runs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A Schiff base complex of palladium anchored on Fe3O4 magnetic nanoparticles as an efficient and magnetically reusable nanocatalyst is reported for C? C bond formation through Heck and Suzuki reactions. The catalyst was easily recovered and reused several times without significant loss of its catalytic efficiency or palladium leaching. The magnetic nanocatalyst was characterized using Fourier transform infrared and inductively coupled plasma atomic emission spectroscopies, thermogravimetric analysis, vibrating sample magnetometry, and transmission and scanning electron microscopies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Treatment of N,N′-bis(salicylidene)-1,2-cyclohexanediamine (H2L) with PdCl2 in the presence of triethylamine afforded [Pd(N2O2)]. Recrystallization in chloroform and acetonitrile (1?:?1) gave suitable crystals for X-ray crystallography. The solid-state structure shows that the environment around palladium is square planar. The structural parameters of the molecule obtained by density functional theory (DFT) calculation in the gas phase and by X-ray diffraction are compared. The Pd(II) Schiff base complex adopts planar geometry by DFT calculation. The coordination site structural parameters, which are obtained from geometry optimization calculation, are close to those from X-ray crystallographic data. The spectral properties such as vibrational frequencies, chemical shifts, electronic excitation and the natural bond orbital analyses of Pd(Salen) are calculated, analyzed and compared with experimental data.  相似文献   

7.
A new heterogeneous catalyst containing a copper(II) Schiff base complex covalently immobilized on the surface of silica‐coated Fe3O4 nanoparticles (Fe3O4@SiO2‐Schiff base‐Cu(II)) was synthesized. Characterization of this catalyst was performed using various techniques. The catalytic potential of the catalyst was investigated for the oxidation of various alkenes (styrene, α‐methylstyrene, cyclooctene, cyclohexene and norbornene) and alcohols (benzyl alcohol, 3‐methoxybenzyl alcohol, 3‐chlorobenzyl alcohol, benzhydrol and n ‐butanol) using tert ‐butyl hydroperoxide as oxidant. The catalytic investigations revealed that Fe3O4@SiO2‐Schiff base‐Cu(II) was especially efficient for the oxidation of norbornene and benzyl alcohol. The results showed that norbornene epoxide and benzoic acid were obtained with 100 and 87% selectivity, respectively. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in catalytic activity were other advantages of this catalyst  相似文献   

8.
在无水无氧条件下,利用三氯化镓与水杨醛缩间氯苯胺反应合成了一种新的席夫碱配合物C13H10ClNO·GaCl3。利用元素分析、核磁共振、红外光谱和X射线衍射单晶结构分析对其进行了表征。单晶结构表明标题配合物晶体属于正交晶系,Pnma空间群,晶胞参数:a=17.873(3),b=7.0853(13),c=12.677(2),α=90,β=90,γ=90,V=1605.4(5)3,Z=4,F(000)=808,R1=0.0283,wR2=0.0649。该配合物中镓以四配位形式存在,形成畸变的四面体结构,配合物依靠分子间的氢键作用进一步联结成二维网状结构。  相似文献   

9.
A Schiff base ligand derived from 5-bromo-2-hydroxybenzaldehyde and 2,2′-dimethylpropylenediamine (H2L) and its corresponding dioxomolybdenum(VI) complex (Mo(O)2L) has been synthesized and characterized by spectroscopic methods. The adsorption of Mo(O)2L on the surface of silica-coated magnetite nanoparticles via hydrogen bonding led to the formation of (α-Fe2O3)–MCM-41–Mo(O)2L as a heterogeneous catalyst. FT-IR and atomic absorption spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize and investigate the new nanocatalyst. A practical catalytic method for the efficient and highly selective oxidation of a wide range of olefins with hydrogen peroxide and tert-butyl hydroperoxide in ethanol over the prepared molybdenum nanocatalyst was investigated. Under reflux conditions, the oxidation of cyclooctene with tert-butyl hydroperoxide or hydrogen peroxide led to the formation of epoxide as the sole product. The catalyst was reused at least six times without a significant decrease in catalytic activity or selectivity, and without detectable leaching of the catalyst.  相似文献   

10.
Abstract

A new asymmetric tetradentate Schiff base, bis(5-methoxysalicylidene)-4-methylbenzene-1,2-diamine), H2L, and its Ni(II) complex were prepared and characterized using elemental analyses (CHN), FTIR, UV–Vis, 1H NMR, and 13C{1H} NMR spectroscopic techniques, and crystal structures of both were determined by X-ray crystallography. For both ligand and Ni(II) complex, density functional theory calculations to find geometry parameters, IR frequencies, electronic properties, and natural bond orbital analysis (NBO) were done with M062X method and Def2-TZVP basis set. All calculated data are consistent with the experiments. NBO data for the Ni(II) complex show that the main type of transition in UV-Vis is interligand charge-transfer, which is assigned as π-π*.  相似文献   

11.
A nickel(II) Schiff base complex immobilized on multi-wall carbon nanotubes (MWCNTs) surface as a highly efficient heterogeneous catalyst was synthesized and characterized by IR, X-ray diffraction patterns, scanning electron microscopy, energy-dispersive X-ray spectroscopy, inductively coupled plasma, elemental analysis, and thermal gravimetric analysis. Then a facile and environmentally benign procedure was developed for synthesis of polyhydroquinoline derivatives via Hantzsch one-pot condensation reaction of aromatic aldehydes, 1,3-diones, ethyl acetoacetate, and ammonium acetate in the presence of above synthesized catalyst under solvent-free conditions. This protocol has the advantages of stability, easy availability, recyclability and eco-friendly nature of catalyst, simple experimental and work-up procedure, and also high to excellent yields. Considering the solvent-free condition and also temperature, time, and yield of the model reaction, the nanocatalyst reported here is among the best catalysts reported so far for synthesis of polyhydroquinolines.  相似文献   

12.
Schiff bases and their complex combinations with metallic ions represent a class of compounds with antimicrobial activity. A ligand was prepared by condensation of the salicylaldehyde with 2‐aminopyridine obtaining 2‐(salicylidene) aminopyridine (SB) with a high capacity for complexing Cu(II) ions. The new compound has been characterized by physical constants (melting point, solubility, stability) and the chemical structure was confirmed by elemental, spectral (IR, UV–visible, 1H NMR and 13C‐NMR) and thermal analyses. The elemental analysis gives a coordination ratio of 1:2 metal:Schiff base. Lethal dose 50 (DL50) values of new Schiff base and their complex with metallic ions were established. The antimicrobial activity of this complex was tested in comparison with the activity of the corresponding Schiff base on strains of Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, Candida albicans, and Klebsiella. These were compared with the activity of the reference drugs (chloramphenicol, tetracycline, ofloxacin and nystatin) on the above‐mentioned strains. It has been established that all compounds tested were very active against both Gram‐positive and Gram‐negative bacteria. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A new Co(II) complex with tridentate Schiff base ligand with a N,N,O donor set has been synthesized and characterized by single X-ray technique and spectroscopic techniques. The thermochemical properties have been studied. X-ray structure analysis of the title compound Co(II)L2 [HL = 2-methyl-6-(2′-hydroxybenzylideneamino) pyridine] shows that the polyhedron around Co(II) is a distorted tetrahedron, and the self-assembly via intermolecular π-π interactions leads to a three-dimensional network. Crystal data for the title complex C26H22CoN4O2: Monoclinic, space group Ia, a = 11.741(7) Å, b = 8.149(5) Å, c = 22.764(16) Å, β = 98.530(12)°, V = 2154(2) Å3, Z = 4.  相似文献   

14.
A new dioxomolybdenum (VI) complex with tridentate hydrazone Schiff base ligand (H2L) derived from 2‐hydroxy‐5‐nitrobenzaldehyde and benzhydrazide was synthesized and designated as [MoO2L (DMF)]·2H2O. The Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) nanocatalyst was successfully prepared by grafting H2L ligand on modified Fe3O4 nanoparticles followed by reacting with MoO2 (acac)2. The complex and nanocatalyst were characterized by various techniques such as elemental analysis, mass, FT‐IR, UV–Vis, 1H NMR, 13C{1H}‐NMR, TGA, XRD, XPS, TEM, SEM and VSM. The catalytic activity of [MoO2L (DMF)]2H2O and Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) were evaluated for the oxidation of various alkenes (cyclooctene, norbornene, cyclohexene, styrene and α‐methyl styrene) in the presence of tert‐butylhydroperoxide as oxidant. The results revealed that the catalysts were especially efficient for oxidation of cyclooctene and norbornene with 100% selectivity towards corresponding epoxide product. Fe3O4@SiO2‐CPS‐L‐MoO2 (EtOH) showed higher catalytic activity, shorter reaction time and higher turnover number (TON) compared with homogeneous complex [MoO2L (DMF)]·2H2O. Moreover, simple magnetic recovery from the reaction mixture and reuse for several times with no significant loss in activity were other advantages of the nanocatalyst.  相似文献   

15.
A precursor (H3A) was synthesized by the mono condensation of 2-aminobenzylamine with salicylaldehyde and then a tetradentade Schiff-base ligand (H2L) prepared by using H3A and 3-methoxysalicylaldehyde. The copper(II) complex of this new ligand was prepared and characterized by elemental analysis, electronic absorption, Fourier transform infrared (FT-IR), and magnetic susceptibility. For the ligand, 1H- and 13C-NMR and liquid chromatography mass spectrometry (LC–MS) spectra were obtained. The tetradentate ligand is coordinated to Cu(II) through the phenolic oxygen and azomethine nitrogen. The use of this metal complex in the preparation of a modified electrode is also described. CuL was electropolymerized on a platinum electrode surface in a 0.1 mol dm?3 solution of lithium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.6 V versus Ag/Ag+. Electrochemical properties of the electroactive polymeric film have been investigated and a surface confined polymerization mechanism was proposed.  相似文献   

16.
A new hydrogen-bonded pseudo-dimer, [Mn(III)L1(CH3CH2OH)]2(ClO4) (1) (L1 = N,N′-bis(2-hydroxy-1-naphthalidenato)-1,2-diaminopropane) has been synthesized and characterized by UV–vis, IR, elemental analysis and crystal structure analysis. The single crystal X-ray diffraction reveals that the structure affords an elongated octahedral MnN2O4 coordination environment, geometry with the four donor atoms of the tetradentate Schiff base in the equatorial plane and with two ethanol molecule in axial positions with Mn–O = 2.265(2) and 2.266(2) Å.  相似文献   

17.
Two macrocyclic Schiff base ligands, L1 [1+1] and L2 [2+2], have been obtained in a one-pot cyclocondensation of 1,4-bis(2-formylphenyl)piperazine and 1,3-diaminopropane. Unfortunately, because of the low solubility of both ligands, their separation was unsuccessful. In the direct reaction of these mixed ligands (L1 and L2) and the appropriate metal ions only [CoL1(NO3)]ClO4, [NiL1](ClO4)2, [CuL1](ClO4)2 and [ZnL1(NO3)]ClO4 complexes have been isolated. All the complexes were characterized by elemental analyses, IR, FAB-MS, conductivity measurements and in the case of the [ZnL1(NO3)]ClO4 complex with NMR spectroscopy.  相似文献   

18.
A new magnetic nanoparticle‐supported Schiff base complex of manganese was prepared via the copper‐catalyzed ‘click’ reaction of an aminosalicylidene manganese complex bearing terminal alkynyl with azide‐functionalized shell–core magnetic nanoparticles. The as‐prepared catalyst was applied in the oxidation of alcohols to corresponding aldehydes or ketones with high yield and selectivity when the reaction was carried out in dimethylsulfoxide at 110°C for 4 h using tert‐butyl hydroperoxide as oxidant. Moreover, the catalyst can be easily separated from the reaction mixture using an external magnet and reused five times with no significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
《先进技术聚合物》2018,29(2):941-950
Due to the narrow layer spacing, graphene oxide (GO) composite membrane usually exhibits a relatively low water flux in the process of wastewater treatment. In this study, GO was reduced to reduced graphene oxide through a bio‐inspired method, which was functionalized modified by poly‐dopamine (PDA). Then a series of PDA/reduced graphene oxide sheet films were prepared by vacuum filtration on the surface of cellulose acetate membrane (under the pressure of −0.1 MPa). The result indicated that the novel membranes had an excellent stability owing to the cross‐link of PDA. In addition, the hydrophilicity of membrane was increased significantly after PDA modification, which presented a superior water flux than pure GO composite membrane. More importantly, as‐prepared membranes were successfully applied for the removal of dyes (including Congo red, methylene blue, and rhodamine B) and heavy mental ion (Cu(II)) from simulated wastewater. This work might provide a new method for preparation and application of GO composite membranes.  相似文献   

20.
A new copper(II) complex [Cu(HL)(ClO4)](ClO4) (1), where HL is a multidentate Schiff base N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine), is prepared, structurally characterized by X-ray crystallography and its spectral and electrochemical properties studied. The complex forms a one-dimensional chain in the solid state structure in which the monomeric Cu(HL) units are linked by the perchlorate ligand. The complex has an axially elongated six coordinate geometry (4+2) with a CuN4O2 core in which the Schiff base ligand displays a tetradentate mode of bonding in the basal plane. The axial ligand is perchlorate with a significantly long Cu–O bond of ca. 2.6 Å. The one-electron paramagnetic complex displays a cyclic voltammetric response for the Cu(II)/Cu(I) couple at 0.01 V versus SCE in MeCN–0.1 M TBAP. The azomethine bond of the Schiff base in 1 on treatment with H2O2 undergoes oxidative conversion to form a bis(picolinato)copper(II) · dihydrate species through the formation of an amido intermediate as evidenced from the solution infrared spectral studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号