首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
门永锋 《高分子科学》2013,31(9):1218-1224
Demixing and colloidal crystallization in the mixture of charge stabilized colloidal poly(methyl methacrylate) particles and soluble poly(ethylene oxide) were investigated by means of synchrotron small-angle X-ray scattering (SAXS) technique. Phase diagram of the mixture was obtained based on visual inspection and SAXS results. The phase behavior is determined as a function of the concentration of the polymer as well as the volume fraction of the colloidal particles. The system shows a one phase region when the concentration of the polymer is low, whereas a two-phase region is present when the concentration of the polymer is larger than a critical concentration at certain volume fraction of the colloids. Interestingly, a face centered cubic colloidal crystalline structure was formed under certain conditions, which has been rarely observed in experiments of colloid-polymer mixtures with competing interactions.  相似文献   

2.
基于密度泛函理论和Yvon-Born-Green方程得到了胶粒耗尽势的表达式.采用密度泛函理论计算了单壁附近和平行狭缝中的混合物溶剂中胶粒的耗尽势及其在单壁处的吸附稳定性.研究结果表明,不同溶剂组分的体积分数和粒子尺寸比等因素对胶粒耗尽势的强度、力程和周期均可产生显著影响,胶粒在单壁附近的吸附稳定性与溶剂粒子尺寸比和体积分数密切相关.此外,对受限于平行狭缝的胶体悬浮液,胶粒的耗尽势阱还可随粒子尺寸比和缝宽呈振荡趋势变化.  相似文献   

3.
Characteristics of pickering emulsion gels formed by droplet bridging   总被引:1,自引:0,他引:1  
We experimentally characterize the microstructure and rheology of a carefully designed mixture of immiscible fluids and near-neutral-wetting colloidal particles. Particle bridging across two fluid interfaces provides a route to highly stable gel-like emulsions at volume fractions of the dispersed phase well below the random close-packing limit for spheres. We investigate the microstructural origins of this behavior by confocal microscopy and reveal a percolating network of colloidal particles that serves as a cohesive scaffold, bridging together droplets of the dispersed phase. Remarkably, the mixture's salient rheological characteristics are governed predominantly by the solids loading and can be tailored irrespective of the droplet volume fraction. The identification of this rheological hallmark could provide a means toward the improved design of modern products that utilize solid-stabilized interfaces.  相似文献   

4.
This review explores the intersection between two important fields of colloid and interface science – that of active colloidal particles and of (passive) particles at fluid-fluid interfaces. The former uses energy input at the particle level to propel particle motions and direct dynamic assemblies. The latter relies on the spontaneous adsorption of particles at fluid interfaces to modify the interfacial energy, rheology, and permeability of biphasic materials. Here, we address two key questions that connect these otherwise distinct fields of study. How do liquid interfaces influence the dynamics of active or driven colloidal particles? How can particle activity influence the dynamics of liquid interfaces? These questions motivate the pursuit of active particle surfactants that move and organize at fluid interfaces to perform useful functions such as enhancing mass transport or modulating interfacial properties. Drawing examples from the literature, we discuss how fluid interfaces can provide a unique environment for the study of active colloids, how surface tension can be harnessed to propel particle motions, and how capillary interactions can be activated to achieve dynamically tunable emulsions and foams. We highlight opportunities for the future study and application of active particles at liquid interfaces.  相似文献   

5.
熵是物理化学的基本状态参量,在统计力学和热力学中处于核心位置.按照玻尔兹曼的微观解释,熵可以由孤立系统微观状态的数目(W)给出,即S=kBlnW,这里kB为玻尔兹曼常数[1,2].根据此公式,微观状态数越多,系统越混乱,熵越大,所以熵常被视作体系无序程度的度量.但熵增仅对应体系微观状态数的增加,与可观测的结构有序程度无关[3~5].在一些典型的软物质体系中,结构越有序熵反而越大,如胶体硬球在随机密堆积点的有序结晶[6]及描述各向异性棒状分子从各向同性相到向列相转变的Onsager原理[7].  相似文献   

6.
Colloidosomes, namely, microcapsules coated by a colloidal shell, have been widely studied as potential carriers of active compounds for various applications. The colloidal shell differs from the shells of other ‘somes’ (liposomes, polymersomes) since it is a composite material with an impenetrable phase—the particles, and a penetrable one—the voids or pores between them. Recent analysis shows that in the shells composed of monodisperse and charged particles, the maximal volume fraction of colloids in the self-assembled layer depends on the size ratio between the particle's hard-sphere radius and the effective radius, which includes the range of repulsive electrostatic interactions. Thus, somewhat counter-intuitively, the density of particles in the shell increases with increasing particle radius. However, mixing particle sizes can lead to highly packed shells where the impenetrable phase volume fraction approaches 100%. The diffusional flux through the colloidal shell is highly sensitive to the packing density (or particle volume fraction); this parameter sets the average size of the pores, their distribution through the shell, and their tortuosity. However, while in thick multi-layer shells the flux increases with increasing particle size, in the case of monolayer-thick shells there is no apparent dependence of the flux on the colloid dimensions.  相似文献   

7.
研究了胶体铜催化丙烯腈水合制丙烯酰胺的高选择性与活性中心结构的关系. 在聚乙烯吡咯烷酮(PVP)保护下, 用肼和氢氧化钠混合液还原CuCl2制得胶体铜, 用其催化丙烯腈水合反应, 选择性达到100%, 产生高选择性的原因如下: (1) 胶体铜的活性中心不是胶粒表面的点缺陷, 而是胶体铜颗粒表面的位错端点. (2) 由于胶体铜具有高硬度和高强度的力学特性, 保证了活性中心结构的稳定性; 胶体铜颗粒的平均粒径(45 nm)超过晶粒的特征长度, 进一步保证了活性中心的稳定性.  相似文献   

8.
We propose a model for the calculation of renormalized charges and osmotic properties of mixtures of highly charged colloidal particles. The model is a generalization of the cell model and the notion of charge renormalization as introduced by Alexander et al. [J. Chem. Phys. 80, 5776 (1984)]. The total solution is partitioned into as many different cells as components in the mixture. The radii of these cells are determined self-consistently for a given set of parameters from the solution of the nonlinear Poisson-Boltzmann equation with appropriate boundary conditions. This generalizes Alexanders's model where the (unique) Wigner-Seitz cell radius is solely fixed by the colloid packing fraction. We illustrate the technique by considering a binary mixture of the colloids with the same sign of charge. The present model can be used to calculate thermodynamic properties of highly charged colloidal mixtures at the level of linear theories, while taking the effect of nonlinear screening into account.  相似文献   

9.
10.
Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.  相似文献   

11.
A full-atomic molecular dynamics simulation has been performed for a ligand shell of colloidal cadmium selenide quantum dots. Trioctylphosphine, trioctylphosphine oxide, octadecylphosphonic acid, and hexadecylamine have been used as ligands. For a mixture of the two former ligands, the effect of surface curvature on the fraction of surface ions of quantum dots bonded to ligands has been studied. It has been shown that, for particles with radii of 1.9 and 4.5 nm, every second and approximately third cadmium atom, respectively, is bonded to trioctylphosphine oxide. Partial introduction of octadecylphosphonic acid and hexadecylamine may increase the fraction of bonded surface atoms by more than two times.  相似文献   

12.
A study of the self-organization of colloidal particles during the evaporation of particle solutions on chemically patterned surfaces is presented. On a surface with hydrophilic and hydrophobic regions, colloidal particles form compact structures on the hydrophilic sites. When a colloidal solution containing a mixture of particles with a variation in size is used, the number density of each type of particle deposited on the hydrophilic islands after evaporation decreases with increasing particle size. This makes it possible to produce a concentration gradient of the particles on islands of different sizes. It is shown that this technique could allow for particle separation.  相似文献   

13.
We report a simple and effective approach to organize micron- and submicron-sized particles in a size selective manner. This approach utilizes the template assisted directed self-assembly technique. A topographically patterned photoresist surface is fabricated and used to create an ordered array of colloidal particles from their aqueous suspensions. Assembly of particles on this template is then achieved by using a conventional spin coating technique. Feasibility of this technique to form a large area of patterned particle assemblies has been investigated. To arrange the particles on the template, the physical confinement offered by the surface topography must overcome a joint effect of centrifugal force and the hydrophobic nature of the photoresist surface. This concept has been extended to the size selective sorting of colloidal particles. The capability of this technique for sorting and organizing colloidal particles of a particular diameter from a mixture of microspheres is demonstrated.  相似文献   

14.
Salt-induced protein phase transitions in drying drops   总被引:1,自引:0,他引:1  
Protein phase transitions in drying sessile drops of protein-salt-water colloidal systems were studied by means of optical and atom-force microscopy. The following sequence of events was observed during drop drying: attachment of a drop to a glass support; redistribution of colloidal phase due to hydrodynamic centrifugal stream; protein ring formation around the edge; formation of protein spatial structures inside a protein ring that pass into gel in the middle of the drop; salt crystallization in the shrinking gel. It was assumed that rapid drying of a protein ring over the circle of high colloidal volume fraction and low strength of interparticle attraction leads to formation of colloidal glass, whereas gel forms only in the middle of the drop at very low protein volume fraction and strong attraction between the particles. Before gelation, colloidal particles form fractal clusters. In dried drops of salt-free protein solutions, no visual protein structures were observed. Structural evolution of protein in sessile drying drops of protein-salt aqueous colloidal solutions is discussed on the basis of experimental data.  相似文献   

15.
We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension properties, emergent collective behavior, and transport of passive tracer particles. Recent exciting theoretical results and current debate on quantifying these complex active fluids highlight the need for conceptually simple experiments to guide our understanding.  相似文献   

16.
We investigate the interaction energy between two colloidal particles on or immersed in nonadsorbing polymer brushes grafted onto the substrate as a function of the separation of the particles by the use of a self-consistent-field theory calculation. Depending on the colloidal size and the penetration depth, we demonstrate the existence of a repulsive energy barrier of several kBT, which can be interpreted by separating the interaction energy into three parts: colloid-polymer interfacial energy, entropic contribution due to "depletion zone" overlap of colloidal particles, and entropic elastic energy of grafted chains by the compression of particles. The existence of a repulsive barrier which is of entirely entropic origin can lead to kinetic stabilization of the mixture rather than depletion flocculation or phase separation. Therefore, the present result may suggest an approach for controlling the self-assembling behavior of colloids for the formation of target structures, by tuning the colloidal interaction on the grafting substrate under appropriate selection of colloidal size, effective gravity (influencing the penetration depth), and brush coverage density.  相似文献   

17.
The selectivity and range of energies offered by specific biological interactions serve as valuable tools for engineering the assembly of colloidal particles into novel materials. In this investigation, high affinity biological interactions between biotin-coated "A" particles (RA = 0.475 microm) and streptavidin-coated "B" particles (RB = 2.75 microm) drive the self-assembly of a series of binary colloidal structures, from colloidal micelles (a large B particle coated by smaller A particles) to elongated chain microstructures (alternating A and B particles), as the relative number of small (A) to large (B) particles (2 < or = NA/NB < or = 200) is decreased at a low total volume fraction (10(-4) < or = phiT < or = 10(-3)). At a significantly higher total volume fraction (phiT > or = 10(-1)) and a low number ratio (NA/NB = 2), the rheological behavior of volume-filling particle networks connected by streptavidin-biotin bonds is characterized. The apparent viscosity (eta) as a function of the shear rate gamma, measured for networks at phiT = 0.1 and 0.2, exhibits shear-rate-dependent flow behavior, and both the apparent viscosity and the extent of shear thinning increase upon an increase of a factor of 2 in the total volume fraction. Micrographs taken before and after shearing show a structural breakdown of the flocculated binary particle network into smaller flocs, and ultimately a fluidlike suspension, with increasing shear rate. Rheological measurements provide further proof that suspension microstructure is governed by specific biomolecular interactions, as control experiments in which the streptavidin molecules on particles were blocked displayed Newtonian flow behavior. This investigation represents the first attempt at measuring the rheology of colloidal suspensions where assembly is driven by biomolecular cross-linking.  相似文献   

18.
刘甲雪  门永锋 《应用化学》2014,31(6):672-677
利用同步辐射小角X射线散射技术,对不同相对分子质量的水溶性高分子聚氧化乙烯(PEO)与电荷稳定的聚甲基丙烯酸甲酯(PMMA)乳胶的混合体系的相行为进行了研究。 PEO与PMMA乳胶混合体系的相行为与体系中乳胶粒子的体积分数和PEO的浓度相关。 在一定乳胶粒子体积分数下,在较低PEO浓度下,混合体系保持均匀分散性。 而当PEO浓度高于某一临界浓度时,混合体系将发生相分离,生成集团相或者形成面心立方(FCC)晶体结构。 PEO相对分子质量的大小也是影响混合体系相行为的重要因素。 当PEO的相对分子质量较高时,混合体系发生相分离所对应的临界PEO浓度较低。 除此,PEO相对分子质量对混合体系的结晶行为也有影响。 在低乳胶粒子体积分数下,较高相对分子质量的PEO容易使乳胶粒子结晶。 相反的,在较高乳胶粒子体积分数下,较低相对分子质量的PEO容易使乳胶粒子堆积形成结晶结构。  相似文献   

19.
Collective behaviours of active particle systems have gained great research attentions in recent years. Here we present a mode-coupling theory (MCT) framework to study the glass transition of a mixture system of active and passive Brownian particles. The starting point is an effective Smoluchowski equation, which governs the dynamics of the probability distribution function in the position phase space. With the assumption of the existence of a nonequilibrium steady state, we are able to obtain dynamic equations for the intermediate scattering functions (ISFs), wherein an irreducible memory function is introduced which in turn can be written as functions of the ISFs based on standard mode-coupling approximations. The effect of particle activity is included through an effective diffusion coefficient which can be obtained via short time simulations. By calculating the long-time limit of the ISF, the Debye-Waller (DW) factor, one can determine the critical packing fraction ηc of glass transition. We find that for active-passive (AP) mixtures with the same particle sizes, ηc increases as the partial fraction of active particle xA increases, which is in agreement with previous simulation works. For system with different active/passive particle sizes, we find an interesting reentrance behaviour of glass transition, i.e., ηc shows a non-monotonic dependence on xA. In addition, such a reentrance behaviour would disappear if the particle activity is large enough. Our results thus provide a useful theoretical scheme to study glass transition behaviour of active-passive mixture systems in a promising way.  相似文献   

20.
Using lubrication theory, drying processes of sessile colloidal droplets on a solid substrate are studied. A simple model is proposed to describe temporal dynamics of both the shape of the drop and the volume fraction of the colloidal particles inside the drop. The concentration dependence of the viscosity is taken into account. It is shown that the final shapes of the drops depend on both the initial volume fraction of the colloidal particles and the capillary number. The results of our simulations are in a reasonable agreement with the published experimental data. Computations for the drops of aqueous solution of human serum albumin are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号