The present work explores the effect of substitution in all free positions of furfural on conformational preferences of formyl group by using ab-initio calculations at the MP2/6-31G(p,d) level of theory. Theoretical modeling was made in vacuo. The selected substituents were -CH(3), NH(2), NO(2) and F groups in 3, 4, 5 and ipso carbonyl positions. Geometries of all derivatives were analyzed and it is ascertained that substitution has not important consequences on furan ring geometry. Differences of energy between OO-cis and trans conformers and energy barriers between them are described and extreme cases are explained. Interesting features appear in the cases of -NH(2) and -NO(2) groups, and particularly when the 3 and ipso carbonyl positions are substituted. Variations in energy barriers are correlated with variations in C2-C6 distances for the transition states and planar forms. Substitution effect on Mülliken charges are analyzed and related with internal rotation energy barriers and differences between conformers. 相似文献
The macroscopic manifestation of hydrophobic interactions for amphiphilic organic ion pairs (tetraalkylammonium-anion) has been shown experimentally by measuring their association constants and their affinity with the organic phase. Beyond a certain size, there is a direct relation between association constants and chain lengths in tetraalkylammonium ions. We propose to cast a bridge between these results and geometrical properties considered at the level of a single ion pair by means of quantum chemistry calculations performed on model systems: trimethylalkylammonium-pentyl sulfate instead of tetraalkylammonium-dodecyl sulfate. Two limiting cases are considered: head-to-head configurations, which yield an optimal electrostatic interaction between polar heads, and parallel configurations with a balance between electrostatic and hydrophobic interactions. All properties (geometries, complexation energies, and atomic charges) were obtained at the MP2 level of calculation, with water described by a continuum model (CPCM). Dispersion forces link hydrocarbon chains of tetraalkylammonium ions and pentyl sulfate, thus yielding (for the largest ion pairs) parallel configurations favored with respect to head-to-head geometries by solute-solvent electrostatic interactions. Given the small experimental association energies, we probe the accuracy limit of the MP2 and CPCM methods. However, clear trends are obtained as a function of chain length, which agree with the experimental observations. The calculated monotonic stabilization of ion pairs when the hydrocarbon chain increases in length is discussed in terms of electrostatic interactions (between ions and between ion pairs and water), dispersion forces, and cavitation energies. 相似文献
The cyclohexyl esters of a series of carboxylic acids, RCO2H, spanning a range of electronegativities and quotients of steric hindrance for the R substituent (R=Me, Et, iPr, tBu, CF3, CH2Cl, CHCl2, CCl3, CH2Br, CHBr2, and CBr3) were prepared. Their conformational equilibria in CD2Cl2 were examined by low‐temperature 1H NMR spectroscopy to study the axial or equatorial orientation of the ester functionality with respect to the adopted chair conformation of the cyclohexane ring. The ab initio and DFT geometry‐optimized structures and relative free energies of the axial and equatorial conformers were also calculated at the HF/6‐311G**, MP2/6‐311G**, and B3LYP/6‐31G** levels of theory, both in the gas phase and in solution. In the latter case, a self‐consistent isodensity polarized continuum model was employed. Only by including electron correlation in the modeling calculations for the solvated molecules was it possible to obtain a reasonable correlation between ΔG°calcd and ΔG°exp. Both the structures and the free energy differences of the axial and equatorial conformers were evaluated with respect to the factors normally influencing conformational preference, namely, 1,3‐diaxial steric interactions in the axial conformer and hyperconjugation. It was assessed that hyperconjugative interactions, σC? C/σC? H and σ*C? O, together with a steric effect—the destabilization of the equatorial conformer with increasing bulk of the R group—were the determinant factors for the position of the conformational equilibria. Thus, because hyperconjugation is held responsible as the mitigating factor for the anomeric effect in 2‐substituted, six‐membered saturated heterocyclic rings, and since it is also similarly responsible, at least partly, in these monosubstituted cyclohexanes for a preferential shift towards the axial conformer, the question is therefore raised: can the anomeric effect really be construed as anomalous? 相似文献
The deprotonation energies of benzene, fluorobenzene, all di-, tri-, and tetrafluorobenzenes, pentafluorobenzene, chlorobenzene, all di-, tri-, and tetrachlorobenzenes, and pentachlorobenzene have been calculated at various levels of second-order Moller-Plesset and density functional theory. Taking the previously determined experimental data as a benchmark, good agreement was achieved in the chloro series even with moderate computational effort, whereas more extended basis sets have to be used to obtain meaningful numbers in the fluoro series. Apparently, most extensive electron correlation is required to avoid artifacts caused by the proximity of nonbonding lone pairs at the carbanionic center and at the fluorine atoms. When two or more fluorine substituents were introduced in the same aromatic ring, their individual effects (as defined by position-dependent acidity increments) proved to be perfectly additive in the entire series. In contrast, the acidifying effect of chloro substituents was found to level off when the number of such halogens increases. Additivity or non-additivity of element effects cannot be ascertained after having merely compared the acidity of mono- and disubstituted substrates, but only after having moved to higher degrees of substitution. 相似文献
The IR and Raman spectra of aminomethylene propanedinitrile (AM) [H2N-CH=C(CN)2], (methylamino)methylene propanedinitrile (MAM) [CH3NH-CH=C(CN)2] and (dimethylamino)methylene propanedinitrile (DMAM) [(CH3)2N-CH=C(CN)2] as solids and solutes in various solvents have been recorded in the region 4000-50 cm–1. AM and DMAM can exist only as one conformer. From the vibrational and NMR spectra of MAM in solutions, the existence of two conformers with the methyl group orientedanti andsyn toward the double C=C bond were confirmed. The enthalpy difference H0 between the conformers was measured to be 3.7±1.4 kJ mol–1 from the IR spectra in acetonitrile solution and 3.4±1.1 kJ mol–1 from the NMR spectra in DMSO solution. Semiempirical (AM1, PM3, MNDO, MINDO3) and ab initio SCF calculations using a DZP basis set were carried out for all three compounds. The calculations support the existence of two conformersanti andsyn for MAM, withanti being 7.8 kJ mol–1 more stable thansyn from ab initio and 8.6, 13.4, 11.6, and 10.8 kJ mor–1 from AM1, PM3, MNDO, and MINDO3 calculations, respectively. Finally, complete assignments of the vibrational spectra for all three compounds were made with the aid of normal coordinate calculations employing scaled ab initio force constants. The same scale factors were optimized on the experimental frequencies of all three compounds, and a very good agreement between calculated and experimental frequencies was achieved. 相似文献
Complexes between formic acid or formate anion and various proton donors (HF, H(2)O, NH(3), and CH(4)) are studied by the MP2 and B3LYP methods with the 6-311++G(3df,3pd) basis set. Formation of a complex is characterized by electron-density transfer from electron donor to ligands. This transfer is much larger with the formate anion, for which it exceeds 0.1 e. Electron-density transfer from electron lone pairs of the electron donor is directed into sigma* antibonding orbitals of X--H bonds of the electron acceptor and leads to elongation of the bond and a red shift of the X--H stretching frequency (standard H-bonding). However, pronounced electron-density transfer from electron lone pairs of the electron donor also leads to reorganization of the electron density in the electron donor, which results in changes in geometry and vibrational frequency. These changes are largest for the C--H bonds of formic acid and formate anion, which do not participate in H-bonding. The resulting blue shift of this stretching frequency is substantial and amounts to almost 35 and 170 cm(-1), respectively. 相似文献
NMR chemical shielding anisotropy tensors have been computed by employing a medium size basis set and the GIAO-DFT(B3LYP) formalism of electronic structure theory for all of the atoms of type I and type II beta-turn models. The models contain all possible combinations of the amino acid residues Gly, Ala, Val, and Ser, with all possible side-chain orientations where applicable in a dipeptide. The several hundred structures investigated contain either constrained or optimized phi, psi, and chi dihedral angles. A statistical analysis of the resulting large database was performed and multidimensional (2D and 3D) chemical-shift/chemical-shift plots were generated. The (1)H(alpha-13)C(alpha), (13)C(alpha-1)H(alpha-13)C(beta), and (13)C(alpha-1)H(alpha-13)C' 2D and 3D plots have the notable feature that the conformers clearly cluster in distinct regions. This allows straightforward identification of the backbone and side-chain conformations of the residues forming beta-turns. Chemical shift calculations on larger For-(L-Ala)(n)-NH(2) (n=4, 6, 8) models, containing a single type I or type II beta-turn, prove that the simple models employed are adequate. A limited number of chemical shift calculations performed at the highly correlated CCSD(T) level prove the adequacy of the computational method chosen. For all nuclei, statistically averaged theoretical and experimental shifts taken from the BioMagnetic Resonance Bank (BMRB) exhibit good correlation. These results confirm and extend our previous findings that chemical shift information from selected multiple-pulse NMR experiments could be employed directly to extract folding information for polypeptides and proteins. 相似文献
The effect of carbon is subtle but sweet : The flexible C‐linkage in the newly synthesised C‐glycosyl mimetic, Manα(1,6)‐C‐ManαOPh allows OH? π bonding, both in the gas phase and in aqueous solution. This interaction is absent in the O‐linked disaccharide (see figure).
The molecular and electronic structure of the ground state of peroxyacetyl nitrate (PAN) was calculated by the unrestricted
Hartree-Fock-Roothaan method with the use of the standard 3–21G and 6–31G basis set. The potential curve of the internal rotation
about the peroxide bond of PAN was calculated with the 6–31G basis set. The curve contains two maxima. The ground state of
PAN is characterized by a structure in which groups of atoms adjacent to the peroxide bond lie in planes that are perpendicular
to each other (the dihedral angle ϱ(COON) is 89.9°). The calculated barriers to rotation are 19.6 and 66.8 kJ mol−1.
Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 600–604, April, 1998. 相似文献
The HOOO radical is supposed to play a role in ozone chemistry, both in the gas phase and aqueous media. We discuss the influence of the solvent on the electronic and geometrical structure of this radical using density functional and high-level ab initio calculations together with continuum, discrete, and discrete-continuum solvent models. Solute-solvent electrostatic interactions are shown to be fundamental, and lead to a noticeable stabilization of the radical, which should adopt a trans conformation in aqueous media. In fact, no energy minimum for the cis conformation is predicted in these conditions. 相似文献
Several complexes of tropylium (1) with anions are optimized at the RI-MP2(full)/6-31++G** level of theory. This binding unit can interact very favorably with anions, and it combines the strength of the electrostatic interaction with the directionality of the anion-pi interaction. The complexes of 1 with anions are characterized by means of the Bader theory of "atoms-in-molecules," and the physical nature of the interaction has been analyzed by means of the molecular interaction potential with polarization tool. Experimental evidence of anion-pi interactions involving seven-membered rings has been found in the solid state. 相似文献
The Fourier transform microwave spectra of the E and Z isomers of butadienyl acetate were measured in the frequency range from 2 to 26.5 GHz under molecular‐jet conditions. The most stable conformer of each isomer, in which all heavy atoms are located in a symmetry plane, was identified after analyzing the spectrum by comparison with the results from quantum‐chemical calculations. The barriers to internal rotation of the acetyl methyl group were found to be 149.1822(20) and 150.2128(48) cm?1 for the E and Z isomers, respectively, which are similar to that of vinyl acetate. A comparison between two theoretical approaches treating internal rotation, the rho axis method and combined axis method, was also performed. The influence of the alkyl R chain on the methyl torsional barriers in CH3 ‐COOR acetates was explored. 相似文献
The secondary alpha-deuterium, the secondary beta-deuterium, the chlorine leaving-group, the nucleophile secondary nitrogen, the nucleophile (12)C/(13)C carbon, and the (11)C/(14)C alpha-carbon kinetic isotope effects (KIEs) and activation parameters have been measured for the S(N)2 reaction between tetrabutylammonium cyanide and ethyl chloride in DMSO at 30 degrees C. Then, thirty-nine readily available different theoretical methods, both including and excluding solvent, were used to calculate the structure of the transition state, the activation energy, and the kinetic isotope effects for the reaction. A comparison of the experimental and theoretical results by using semiempirical, ab initio, and density functional theory methods has shown that the density functional methods are most successful in calculating the experimental isotope effects. With two exceptions, including solvent in the calculation does not improve the fit with the experimental KIEs. Finally, none of the transition states and force constants obtained from the theoretical methods was able to predict all six of the KIEs found by experiment. Moreover, none of the calculated transition structures, which are all early and loose, agree with the late (product-like) transition-state structure suggested by interpreting the experimental KIEs. 相似文献
During nitroxide-mediated polymerization (NMP) in the presence of a nitroxide R2(R1)NO*, the reversible formation of N-alkoxyamines [P-ON(R1)R2] reduces significantly the concentration of polymer radicals (P*) and their involvement in termination reactions. The control of the livingness and polydispersity of the resulting polymer depends strongly on the magnitude of the bond dissociation energy (BDE) of the C-ON(R1)R2 bond. In this study, theoretical BDEs of a large series of model N-alkoxyamines are calculated with the PM3 method. In order to provide a predictive tool, correlations between the calculated BDEs and the cleavage temperature (T(c)), and the dissociation rate constant (k(d)), of the N-alkoxyamines are established. The homolytic cleavage of the N-OC bond is also investigated at the B3P86/6-311++G(d,p)//B3LYP/6-31G(d), level. Furthermore, a natural bond orbital analysis is carried out for some N-alkoxyamines with a O-C-ON(R1)R2 fragment, and the strengthening of their C-ON(R1)R2 bond is interpreted in terms of stabilizing anomeric interactions. 相似文献