共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications. 相似文献
2.
《Electrochemistry communications》2002,4(9):722-726
We report on the detection of DNA hybridization in connection to cadmium sulfide nanoparticle tracers and electrochemical stripping measurements of the cadmium. A nanoparticle-promoted cadmium precipitation is used to enlarge the nanoparticle tag and amplify the stripping DNA hybridization signal. In addition to measurements of the dissolved cadmium ion we demonstrate solid-state measurements following a ‘magnetic’ collection of the magnetic-bead/DNA-hybrid/CdS-tracer assembly onto a thick-film electrode transducer. The new protocol combines the amplification features of nanoparticle/polynucleotides assemblies and highly sensitive stripping potentiometric detection of cadmium, with an effective magnetic isolation of the duplex. The low detection limit (100 fmol) is coupled to good reproducibility (RSD=6%). Prospects for using binary inorganic colloids for multi-target detection are discussed. 相似文献
3.
《Electrochemistry communications》2003,5(1):83-86
The growth of metals on DNA templates has generated considerable interest in connection to the design of metallic nanostructures. Here we exploit the DNA-induced generation of metal clusters for developing an electrical biosensing protocol. The new hybridization assay employs a probe-modified gold surface, and is based on the electrostatic ‘collection’ of silver cations along the DNA duplex, the reductive formation of silver nanoclusters along the DNA backbone, dissolution of the silver aggregate and stripping potentiometric detection of the dissolved silver at a thick-film carbon electrode. The new protocol thus combines the inherent signal amplification of stripping analysis with effective discrimination against nonhybridized DNA. 相似文献
4.
An ultra-sensitive assay for quantification of DNA based on single-molecule detection coupled with hybridization accumulation was developed. In this assay, target DNA (tDNA) in solution was accumulated on a silanized substrate blocked with ethanolamine and bovine serum albumin (BSA) through a hybridization reaction between tDNA and capture DNA immobilized on the substrate. The tDNA on the substrate was labeled with quantum dots which had been modified with detection DNA and blocked with BSA. The fluorescence image of single QD-labeled tDNA molecules on the substrate was acquired using total internal reflection fluorescence microscopy. The tDNA was quantified by counting the bright dots on the image from the QDs. The limit of detection of the DNA assay was as low as 6.4 × 10(-18) mol L(-1). Due to the ultra-high sensitivity, the DNA assay was applied to measure the beta-2-microglobulin messenger RNA level in single human breast cancer cells without a need for PCR amplification. 相似文献
5.
We report gold nanoparticle based FRET assay to monitor the cleavage of DNA by nucleases. Fluorescence signal enhancement is observed by a factor of 120 after the cleavage reaction in the presence of S1 nuclease. The mechanism of distant dependent fluorescence quenching has been discussed. Our experimental results on distance dependent fluorescence quenching match quite well with theoretical findings obtained from the fluorescence quenching model by Gersten and Nitzan (Surf. Sci. 1985, 158, 165). Our experimental observation paradigm for the design of optical based molecular ruler strategies at distances more than double the distances achievable using traditional dipole-dipole Columbic energy transfer based methods. 相似文献
6.
Synthesis of Ag nanopaticles was carried out with carboxylated cellulose nanocrystals as the scaffolds by reducing metallic
cations using NaBH4. Ag particles with a size less than 10 nm were readily prepared and dispersed well. The carboxyl and hydroxyl groups of carboxylated
cellulose nanocrystals supplied a coordination effect to adsorb metallic cations and Ag nanoparticles, which prevent the aggregation
of nanoparticles. The carboxylated cellulose nanocrystals carrying Ag nanoparticles were used as labels for electrical detection
of DNA hybridization. 相似文献
7.
A magnetic triggering of a solid-state electrical transduction of DNA hybridization is described. Positioning of an external magnet below the thick-film electrode attracts the DNA/particle network and enables the solid-state electrochemical stripping detection of the silver tracer. TEM imaging indicates that the hybridization event results in a three-dimensional aggregate structure in which duplex segments link the metal nanoparticles and magnetic spheres, and that most of this assembly is covered with the silver precipitate. This leads to a direct contact of the metal tag with the surface (in connection to the magnetic collection) and enables the solid-state electrochemical transduction (without prior dissolution and subsequent electrodeposition of the metal), using oxidative dissolution of the silver tracer. No such aggregates (and hence magnetic "collection") are observed in the presence of noncomplementary DNA, that is, without the linking hybrid. The new method couples high sensitivity of silver-amplified assays with effective discrimination against excess of closely related nucleotide sequences (including single-base imperfections). Such direct electrical detection of DNA/metal-particle assemblies can bring new capabilities to the detection of DNA hybridization, and could be applied to other bioaffinity assays. 相似文献
8.
Serena Laschi Ilaria Palchetti Giovanna Marrazza Marco Mascini 《Bioelectrochemistry (Amsterdam, Netherlands)》2009,76(1-2):214
In the present study, we investigated the properties of PNA and LNA capture probes in the development of an electrochemical hybridization assay. Streptavidin-coated paramagnetic micro-beads were used as a solid phase to immobilize biotinylated DNA, PNA and LNA capture probes, respectively. The target sequence was then recognized via hybridization with the capture probe. After labeling the biotinylated hybrid with a streptavidin–enzyme conjugate, the electrochemical detection of the enzymatic product was performed onto the surface of a disposable electrode. The assay was applied to the analytical detection of biotinylated DNA as well as RNA sequences. Detection limits, calculated considering the slope of the linear portion of the calibration curve in the range 0–2 nM were found to be 152, 118 and 91 pM, coupled with a reproducibility of the analysis equal to 5, 9 and 6%, calculated as RSD%, for DNA, PNA and LNA probes respectively, using the DNA target. In the case of the RNA target, the detection limits were found to be 51, 60 and 78 pM for DNA, PNA and LNA probes respectively. 相似文献
9.
Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection 总被引:5,自引:0,他引:5
A novel and sensitive electrochemical DNA biosensor based on multi-walled carbon nanotubes functionalized with a carboxylic acid group (MWNTs-COOH) for covalent DNA immobilization and enhanced hybridization detection is described. The MWNTs-COOH-modified glassy carbon electrode (GCE) was fabricated and oligonucleotides with the 5'-amino group were covalently bonded to the carboxyl group of carbon nanotubes. The hybridization reaction on the electrode was monitored by differential pulse voltammetry (DPV) analysis using an electroactive intercalator daunomycin as an indicator. Compared with previous DNA sensors with oligonucleotides directly incorporated on carbon electrodes, this carbon nanotube-based assay with its large surface area and good charge-transport characteristics dramatically increased DNA attachment quantity and complementary DNA detection sensitivity. This is the first application of carbon nanotubes to the fabrication of an electrochemical DNA biosensor with a favorable performance for the rapid detection of specific hybridization. 相似文献
10.
《Electrochemistry communications》2003,5(10):887-891
A label-free electrochemical detection protocol for DNA hybridization is reported for the first time by using a gold electrode (AuE). The oxidation signal of guanine was monitored at +0.73 V by using square wave voltammetry (SWV) on self-assembled l-cysteine monolayer (SAM) modified AuE. The electrochemical determination of hybridization between an inosine substituted capture probe and native target DNA was also accomplished. 6-mer adenine probe was covalently attached to SAM via its amino link at 5′ end. Then, 6-mer thymine-tag of the capture probe was hybridized with the adenine probe, thus left the rest of the oligonucleotide available for hybridization with the target. The dependence of the guanine signal upon the concentration of the target was observed. Probe modified AuE was also challenged with non-complementary and mismatch containing oligonucletides. Label-free detection of hybridization on AuE is greatly advantageous over the existing carbon and mercury electrode materials, because of its potential applicability to microfabrication techniques. Performance characteristics of the genosensor are described, along with future prospects. 相似文献
11.
Aberrant expression of microRNAs (miRNAs), short non-coding RNA molecules regulating gene expression, is often found in tumor cells, making the miRNAs suitable candidates as cancer biomarkers. Electrochemistry is an interesting alternative to current standard methods of miRNA detection by offering cheaper instrumentation and faster assays times. In this paper, we labeled miRNA in a quick, simple, two-step procedure with electroactive complex of osmium(VI) and 2,2′-bipyridine, Os(VI)bipy, which specifically binds to the ribose at the 3′-end of the miRNA, and hybridized such labeled miRNA with biotinylated capture probe attached to the streptavidin magnetic beads. Labeled miRNA was then detected at hanging mercury drop electrode at femtomole level due to an electrocatalytic nature of the peak from the Os(VI)bipy label. We obtained good selectivity of the assay using elevated hybridization temperatures for better discrimination of perfect duplex from single and double mismatches. After optimization of the protocol, we demonstrated feasibility of our assay by detecting target miRNA in real total RNA samples isolated from human cancer cells. 相似文献
12.
This study demonstrates a highly sensitive sensing scheme for the detection of low concentrations of DNA, in principle down to the single biomolecule level. The previously developed technique of electrochemical current amplification for detection of single nanoparticle (NP) collisions at an ultramicroelectrode (UME) has been employed to determine DNA. The Pt NP/Au UME/hydrazine oxidation reaction was employed, and individual NP collision events were monitored. The Pt NP was modified with a 20-base oligonucleotide with a C6 spacer thiol (detection probe), and the Au UME was modified with a 16-base oligonucleotide with a C6 spacer thiol (capture probe). The presence of a target oligonucleotide (31 base) that hybridized with both capture and detection probes brought a Pt NP on the electrode surface, where the resulting electrochemical oxidation of hydrazine resulted in a current response. 相似文献
13.
We have developed a simple and ultrasensitive E-DNA sensor based on the ssDNA-assisted cascade of a hybridization reaction mechanism to form a long concatamers structure to improve its sensitivity, significantly. The proposed sensor was applied to sequence-specific DNA and ATP detection. Experimental results showed a quantitative measurement with the detection limit as low as 1 aM for specific DNA and 10 fM for ATP. 相似文献
14.
Kara P Ozkan D Kerman K Meric B Erdem A Ozsoz M 《Analytical and bioanalytical chemistry》2002,373(8):710-716
The electrochemical behavior of hemin, an iron complex of porphyrin, on binding to DNA at a glassy carbon electrode (GCE) and in solution, is described. Hemin, which interacts with covalently immobilized calf thymus DNA, was detected by use of a bare GCE, a double-stranded DNA-modified GCE (dsDNA-modified GCE), and a single-stranded DNA-modified GCE (ssDNA-modified GCE), in combination with differential pulse voltammetry (DPV). The structural conformation of DNA was determined from changes in the voltammetric signals acquired on reduction of hemin. As a result of its large steric structure and anionic substitution on its porphyrin plane, hemin intercalates between the base pairs of dsDNA. A scan-rate study for hemin and the dsDNA-hemin complex were also performed to determine the electrochemical behavior of the complex. The partition coefficient was obtained from the peak currents measured when different concentrations of hemin were in the presence of dsDNA. By observing the oxidation signals of guanine, damage to DNA after reaction with hemin at the GCE surface was also detected. The electrochemical detection of hybridization between the covalently immobilized probe and its target sequence was detected by use of hemin. These results demonstrate the use of DNA biosensors in conjunction with hemin for electrochemical detection of hybridization and damage to DNA. 相似文献
15.
A novel, sensitive electrochemical DNA hybridization detection assay, using cadmium sulfide (CdS) nanoclusters as the oligonucleotide labeling tag, is described. The assay relies on the hybridization of the target DNA with the CdS nanocluster oligonucleotide DNA probe, followed by the dissolution of the CdS nanoclusters anchored on the hybrids and the indirect determination of the dissolved cadmium ions by sensitive anodic stripping voltammetry (ASV) at a mercury-coated glassy carbon electrode (GCE). The results showed that only a complementary sequence could form a double-stranded dsDNA-CdS with the DNA probe and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. The combination of the large number of cadmium ions released from each dsDNA hybrid with the remarkable sensitivity of the electrochemical stripping analysis for cadmium at mercury-film GCE allows detection at levels as low as 0.2 pmol L(-1) of the complementary sequence of DNA. 相似文献
16.
Magnetic bead capture has been used for eliminating non-specific adsorption effects hampering label-free detection of DNA hybridization based on stripping potentiometric measurements of the target guanine at graphite electrodes. In particular, the efficient magnetic separation has been extremely useful for discriminating against unwanted constituents, including a large excess of co-existing mismatched and non-complementary oligomers, chromosomal DNA, RNA and proteins. The new protocol involves the attachment of biotinylated oligonucleotide probes onto streptavidin-coated magnetic beads, followed by the hybridization event, dissociation of the DNA hybrid from the beads, and potentiometric stripping measurements at a renewable graphite pencil electrode. Such coupling of magnetic hybridization surfaces with renewable graphite electrode transducers and label-free electrical detection results in a greatly simplified protocol and offers great promise for centralized and decentralized genetic testing. A new magnetic carbon-paste transducer, combining the solution-phase magnetic separation with an instantaneous magnetic collection of the bead-captured hybrid, is also described. The characterization, optimization and advantages of the genomagnetic label-free electrical protocol are illustrated below for assays of DNA sequences related to the breast-cancer BRCA1 gene. 相似文献
17.
Min Ruan Cheng-Gang Niu Guang-Ming Zeng Pin-Zhu Qin Xiao-Yu Wang Da-Wei Huang Jing Huang Chang-Zheng Fan 《Mikrochimica acta》2011,175(1-2):105-112
A two-probe tandem nucleic acid hybridization assay for detection of Staphylococcus aureus is presented. It is based on a europium(III) complex as a marker that has a long fluorescence lifetime, high quantum yield and can be easily conjugated to an oligonucleotide signaling probe. The amino-modified capture probe was associated with the signaling probe to form a two-probe tandem DNA pattern that is complementary to the target DNA. The method was optimized in terms of hybridization temperature, hybridization time and washing time. This resulted in good specificity and sensitivity when detecting such bacteria in food samples. Figure
A europium complex as a long fluorescent lifetime marker was conjugated to an oligonucleotide. The amino-modified capture probe was associated with the signaling probe to form a two-probe tandem DNA pattern that is complementary to the target DNA. The results are shown that this method has good specificity and sensitivity. 相似文献
18.
The authors describe an electrochemical strategy for highly sensitive determination of ATP that involves (a) aptamer-based target recognition, (b) enzyme-free dendritic DNA nanoassembly amplification with multiplex binding of the biotin-strepavidin system, and (c) enzyme-amplified differential pulse voltammetric readout. In the presence of ATP, binding of ATP to the aptamer releases trigger DNA from the double-stranded complex between ATP aptamer and trigger DNA. The single-stranded thiolated capture probe, chemisorbed on the gold electrode surface, captures the released trigger DNA via hybridization. The toehold of the trigger DNA is recombined with one end of the first substrate DNA (1) which is on its other end biotinylated and blocked, with loops, by a counterstrand. The latter is removed by a complementary single-stranded helper (1) exposing two toeholds and two identical complimentary sequences for a second biotinylated substrate DNA (2). The latter, which is double-stranded except for the toehold, binds to one of these two sites. It is then stripped from its counter strand by another single-stranded helper DNA 2, exposing a toehold to bind another substrate DNA 1. On this substrate, another cycle with dentrimeric bransching can start.Substrate 1 with its two binding sites for substrate 2 initiates the assembly of dendritic DNA on the surface of the gold electrode, which finally possesses numerous biotins at the terminal ends of both of the associated substrate DNAs. Subsequent multiplex binding of streptavidinylated alkaline phosphatase and enzyme-amplified electrochemical readout leads to a highly sensitive electrochemical ATP aptasensor. If operated in the DPV mode, the current as measured at a typical working potential of 0.25 V (vs. Ag/AgCl) increases linearly over the 10 nM to 10 μM logarithmic ATP concentration range, and the detection limit is 5.8 nM (at an S/N ratio of 3). The assay is highly specific and reproducible. It was successfully applied to the detection of ATP in spiked human serum samples. 相似文献
19.
We developed a novel method for counting single gold nanoparticles in free solution with flash-lamp darkfield microscopy and demonstrated that it could be applied to highly sensitive DNA hybridization detection based on target DNA induced AuNP aggregation and counts reduction. 相似文献
20.
This paper described a novel electrochemical DNA biosensor for rapid specific detection of nucleic acids based on the sulfonated polyaniline (SPAN) nanofibre and cysteamine-capped gold nanoparticle (CA-GNP) layer-by-layer films. A precursor film of 3-mercaptopropionic acid (MPA) was firstly self-assembled on the Au electrode surface. CA-GNP was covalently deposited on the Au/MPA electrode to obtain a stable substrate. SPAN nanofibre and CA-GNP were alternately layer-by-layer assembled on the stable substrate by electrostatic force. Cyclic voltammetry was used to monitor the consecutive growth of the multilayer films by utilizing [Fe(CN)6]3−/4− as the redox indicator. The (CA-GNP/SPAN)n films showed satisfactory ability of electron transfer and excellent redox activity in neutral media. Negatively charged probe ssDNA was immobilized on the outer layer of the multilayer film (CA-GNP) through electrostatic affinity. Chronopotentiometry and electrochemical impedance spectroscopy were employed to obtain the direct electrochemical readout for probe ssDNA immobilization and hybridization using [Fe(CN)6]3−/4− in solution as the mediator. While electrochemical impedance spectroscopy led to the characterization of the electron-transfer resistance at the electrode, chronopotentiometry provided the total resistance at the interfaces of the modified electrodes. A good correlation between the total electrode resistances and the electron-transfer resistances at the conducting supports was found. Chronopotentiometry was suggested as a rapid transduction means (a few seconds). Based on the (CA-GNP/SPAN)n films, the target DNA with 20-base could be detected up to 2.13 × 10−13 mol/L, and the feasibility for the detection of base-mismatched DNA was also demonstrated. 相似文献