首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a probabilistic greedy search method for combinatorial optimisation problems. This approach is implemented and evaluated for the Set Covering Problem (SCP) and shown to yield a simple, robust, and quite fast heuristic. Tests performed on a large set of benchmark instances with up to 1000 rows and 10?000 columns show that the algorithm consistently yields near-optimal solutions.  相似文献   

2.
3.
A multi-objective version of the Maximum Availability Location Problem is presented in this paper. The assumption of server independence is relaxed by adopting the approach of the Queuing Probabilistic Location Set Covering Problem for calculating the probability that all servers in a given region are busy. The first objective seeks to maximize the population receiving coverage within a given distance standard and with a given level of reliability. The second objective chooses those locations which minimize the cost of covering the population. This model is used to obtain sets of good locations using data obtained from the Barbados Emergency Ambulance Service. The solutions obtained from the optimization model are then subject to a detailed analysis by simulation. The results reveal the potentially good performance of the system, when locations derived from the optimization model are used.  相似文献   

4.
With emergencies being, unfortunately, part of our lives, it is crucial to efficiently plan and allocate emergency response facilities that deliver effective and timely relief to people most in need. Emergency Medical Services (EMS) allocation problems deal with locating EMS facilities among potential sites to provide efficient and effective services over a wide area with spatially distributed demands. It is often problematic due to the intrinsic complexity of these problems. This paper reviews covering models and optimization techniques for emergency response facility location and planning in the literature from the past few decades, while emphasizing recent developments. We introduce several typical covering models and their extensions ordered from simple to complex, including Location Set Covering Problem (LSCP), Maximal Covering Location Problem (MCLP), Double Standard Model (DSM), Maximum Expected Covering Location Problem (MEXCLP), and Maximum Availability Location Problem (MALP) models. In addition, recent developments on hypercube queuing models, dynamic allocation models, gradual covering models, and cooperative covering models are also presented in this paper. The corresponding optimization techniques to solve these models, including heuristic algorithms, simulation, and exact methods, are summarized.  相似文献   

5.
A novel representation is described that models some important NP-hard problems, such as the propositional satisfiability problem (SAT), the Traveling Salesperson Problem (TSP), the Quadratic Assignment Problem (QAP), and the Minimal Set Covering Problem (MSCP) by means of only two types of constraints: ‘choice constraints’ and ‘exclusion constraints’. In its main section the paper presents an approach for solving an m-CNF-SAT problem (Conjunctive Normal Form Satisfaction: n variables, p clauses, clause length m) by integer programming. The approach is unconventional, because 2n distinct 0–1 variables are used for each clause of the m-CNF-SAT problem. The constraint matrix A forces that for every clause exactly one 0–1 variable is set equal to 1 (choice constraint), and no two 0–1 variables, representing a literal and its complement, are both set equal to 1 (exclusion constraints). The particular m-CNF-SAT instance is coded in a cost vector, which serves for maximization of the number of satisfied clauses. The paper presents a modification of the Simplex for solving the obtained integer program. A main theorem of the paper is that this algorithm always finds a 0–1 integer solution. A solution of the integer program corresponds to a solution of the m-CNF-SAT and vice versa. The results of significant experimental tests are reported, and the procedure is compared to other approaches. The same modelling technique is then used for the Traveling Salesperson Problem, for the Minimal Set Covering, and for the Quadratic Assignment Problem: it is shown that a uniform approach is thus useful.  相似文献   

6.
This paper considers the Single Source Capacitated Facility Location Problem (SSCFLP). We propose a Scatter Search approach to provide upper bounds for the optimal solution of the problem. The proposed approach uses GRASP to initialize the Reference Set. Solutions of the Reference Set are combined using a procedure that consists of two phases: (1) the initialization phase and (2) the improvement phase. During the initialization phase each client is assigned to an open facility to obtain a solution that is then improved with the improvement phase. Also, a tabu search algorithm is applied. In order to evaluate the proposed approach we use different sets of test problems. According to the results obtained we observe that the method provides good quality solutions with reasonable computational effort.  相似文献   

7.
Aeromedical and ground ambulance services often team up in responding to trauma crashes, especially when the emergency helicopter is unable to land at the crash scene. We propose location-coverage models and a greedy heuristic for their solution to simultaneously locate ground and air ambulances, and landing zones (transfer points). We provide a coverage definition based on both response time and total service time, and consider three coverage options; only ground emergency medical services (EMS) coverage, only air EMS coverage, or joint coverage of ground and air EMS in which the patient is transferred from an ambulance into an emergency helicopter at a transfer point. To analyze this complex coverage situation we develop two sets of models, which are variations of the Location Set Covering Problem (LSCP) and the Maximal Covering Location Problem (MCLP). These models address uncertainty in spatial distribution of motor vehicle crash locations by providing coverage to a given set of both crash nodes and paths. The models also consider unavailability of ground ambulances by drawing upon concepts from backup coverage models. We illustrate our results on a case study that uses crash data from the state of New Mexico. The case study shows that crash node and path coverage percentage values decrease when ground ambulances are utilized only within their own jurisdiction.  相似文献   

8.
In this paper we propose a GRASP matheuristic coupled with an Integer Programming refinement based on Set Partitioning to solve the Cell Formation Problem. We use the grouping efficacy measure to evaluate the solutions. As this measure is nonlinear, we propose a fractional Set Partitioning approach and its linearization. Our method is validated on a set of 35 instances from the literature. The experiments found four unknown solutions. For all instances with known optima, our method is able to determine the optimum solutions.  相似文献   

9.
This paper describes an application of genetic algorithms to the bus driver scheduling problem. The application of genetic algorithms extends the traditional approach of Set Covering/Set Partitioning formulations, allowing the simultaneous consideration of several complex criteria. The genetic algorithm is integrated in a DSS but can be used as a very interactive tool or a stand-alone application. It incorporates the user's knowledge in a quite natural way and produces solutions that are almost directly implemented by the transport companies in their operational planning processes. Computational results with airline and bus crew scheduling problems from real world companies are presented and discussed.  相似文献   

10.
We study the Set Covering Problem with uncertain costs. For each cost coefficient, only an interval estimate is known, and it is assumed that each coefficient can take on any value from the corresponding uncertainty interval, regardless of the values taken by other coefficients. It is required to find a robust deviation (also called minmax regret) solution. For this strongly NP-hard problem, we present and compare computationally three exact algorithms, where two of them are based on Benders decomposition and one uses Benders cuts in the context of a Branch-and-Cut approach, and several heuristic methods, including a scenario-based heuristic, a Genetic Algorithm, and a Hybrid Algorithm that uses a version of Benders decomposition within a Genetic Algorithm framework.  相似文献   

11.
This paper deals with the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). The HFVRP generalizes the classical Capacitated Vehicle Routing Problem by considering the existence of different vehicle types, with distinct capacities and costs. The objective is to determine the best fleet composition as well as the set of routes that minimize the total costs. The proposed hybrid algorithm is composed by an Iterated Local Search (ILS) based heuristic and a Set Partitioning (SP) formulation. The SP model is solved by means of a Mixed Integer Programming solver that interactively calls the ILS heuristic during its execution. The developed algorithm was tested in benchmark instances with up to 360 customers. The results obtained are quite competitive with those found in the literature and new improved solutions are reported.  相似文献   

12.
We study in this article the polynomial approximation properties of the Quadratic Set Covering problem. This problem, which arises in many applications, is a natural generalization of the usual Set Covering problem. We show that this problem is very hard to approximate in the general case, and even in classical subcases (when the size of each set or when the frequency of each element is bounded by a constant). Then we focus on the convex case and give both positive and negative approximation results. Finally, we tackle the unweighted version of this problem.  相似文献   

13.
Recently, the authors have formulated new models for the location of congested facilities, so to maximize population covered by service with short queues or waiting time. In this paper, we present an extension of these models, which seeks to cover all population and includes server allocation to the facilities. This new model is intended for the design of service networks, including health and EMS services, banking or distributed ticket-selling services. As opposed to the previous Maximal Covering model, the model presented here is a Set Covering formulation, which locates the least number of facilities and allocates the minimum number of servers (clerks, tellers, machines) to them, so to minimize queuing effects. For a better understanding, a first model is presented, in which the number of servers allocated to each facility is fixed. We then formulate a Location Set Covering model with a variable (optimal) number of servers per service center (or facility). A new heuristic, with good performance on a 55-node network, is developed and tested.  相似文献   

14.
This paper presents a method that creates instructionally sound learning experiences by means of learning objects. The method uses a mathematical model, distinguishes two kinds of Learning Objects Properties and proceeds in two major steps: first, the Course Creation is transformed into Set Covering under specific requirements derived from Learning Theories and practice; second, the Alternative Learning Sources are selected by using a similarity measure specially defined for this purpose.  相似文献   

15.
Attempts to allow exponentially many inequalities to be candidates to Lagrangian dualization date from the early 1980's. In this paper, the term Relax-and-Cut, introduced elsewhere, is used to denote the whole class of Lagrangian Relaxation algorithms where Lagrangian bounds are attempted to be improved by dynamically strengthening relaxations with the introduction of valid constraints. An algorithm in that class, denoted here Non Delayed Relax-and-Cut, is described in detail, together with a general framework to obtain feasible integral solutions. Specific implementations of NDRC are presented for the Steiner Tree Problem and for a Cardinality Constrained Set Partitioning Problem.  相似文献   

16.
We address the Capacitated Arc Routing Problem with Stochastic Demands (CARPSD), which we formulate as a Set Partitioning Problem. The CARPSD is solved by a Branch-and-Price algorithm, which we apply without graph transformation. The demand’s stochastic nature is incorporated into the pricing problem. Computational results are reported.  相似文献   

17.
In this paper, we shall propose a new method to obtain symmetric solutions of a fully fuzzy linear system (FFLS) based on a 1-cut expansion. To this end, we solve the 1-cut of a FFLS (in the present paper, we assumed that the 1-cut of a FFLS is a crisp linear system or equivalently, the matrix coefficient and right hand side have triangular shapes), then some unknown symmetric spreads are allocated to each row of a 1-cut of a FFLS. So, after some manipulations, the original FFLS is transformed to solving 2n linear equations to find the symmetric spreads. However, our method always give us a fuzzy number vector solution. Moreover, using the proposed method leads to determining the maximal- and minimal symmetric solutions of the FFLS which are placed in a Tolerable Solution Set and a Controllable Solution Set, respectively. However, the obtained solutions could be interpreted as bounded symmetric solutions of the FFLS which are useful for a large number of multiplications existing between two fuzzy numbers. Finally, some numerical examples are given to illustrate the ability of the proposed method.  相似文献   

18.
This paper presents an evaluation operator for single-trip vehicle routing problems where it is not necessary to visit all the nodes. Such problems are known as Tour Location Problems. The operator, called Selector, is a dynamic programming algorithm that converts a given sequence of nodes into a feasible tour. The operator returns a subsequence of this giant tour which is optimal in terms of length. The procedure is implemented in an adaptive large neighborhood search to solve a specific tour location problem: the Covering Tour Problem. This problem consists in finding a lowest-cost Hamiltonian cycle over a subset of nodes such that nodes outside the tour are within a given distance from a visited node. The metaheuristic proposed is competitive as shown by the quality of results evaluated using the output of a state-of-the-art exact algorithm.  相似文献   

19.
The Orienteering Problem (OP) is a well-known variant of the Traveling Salesman Problem. In this paper, a novel Greedy Randomized Adaptive Search Procedure (GRASP) solution is proposed to solve the OP. The proposed method is shown to outperform state-of-the-art heuristics for the OP in producing high quality solutions. In comparison with the best known solutions of standard benchmark instances, the method can find the optimal or the best known solution of about 70 % of the instances in a reasonable time, which is about 17 % better than the best known approach in the literature. Moreover, a significant improvement is achieved on the solution of two standard benchmark instances.  相似文献   

20.
In this survey type article, various connections between eulerian graphs and other graph properties such as being hamiltonian, nowhere-zero flows, the cycle-plus-triangles problem and problems derived from it, are demonstrated. It is also shown how compatible cycle decompositions can be used to construct loopless 4-regular graphs having precisely one hamiltonian cycle, or to prove the equivalence between the Chinese Postman Problem and the Minimum Cycle Covering Problem in the planar bridgeless case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号