首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 137 毫秒
1.
Prion diseases, including ovine scrapie, bovine spongiform encephalopathy (BSE), human kuru and Creutzfeldt–Jakob disease (CJD), originate from a conformational change of the normal cellular prion protein (PrPC) into abnormal protease-resistant prion protein (PrPSc). There is concern regarding these prion diseases because of the possibility of their zoonotic infections across species. Mutations and polymorphisms of prion sequences may influence prion-disease susceptibility through the modified expression and conformation of proteins. Rapid determination of susceptibility based on prion-sequence polymorphism information without complex structural and molecular biological analyses may be possible. Information regarding the effects of mutations and polymorphisms on prion-disease susceptibility was collected based on previous studies to classify the susceptibilities of sequences, whereas the BLOSUM62 scoring matrix and the position-specific scoring matrix were utilised to determine the distance of target sequences. The k-nearest neighbour analysis was validated with cross-validation methods. The results indicated that the number of polymorphisms did not influence prion-disease susceptibility, and three and four k-objects showed the best accuracy in identifying the susceptible group. Although sequences with negative polymorphisms showed relatively high accuracy for determination, polymorphisms may still not be an appropriate factor for estimating variation in susceptibility. Discriminant analysis of prion sequences with scoring matrices was attempted as a possible means of determining susceptibility to prion diseases. Further research is required to improve the utility of this method.  相似文献   

2.
通过关于“普里昂”蛋白病毒疾病的已有临床、医学生理、免疫和化学等方面的现象,讨论了朊病毒当中的部分蛋白氧化损伤和蛋白自由基化学本质。  相似文献   

3.
Prion diseases are currently in the spotlight. Among them, the Creutzfeldt–Jakob disease in humans, scrapie in sheep, and bovine spongiform encephalopathy, or mad cow disease, are most commonly known. The term “spongiform” refers to the characteristic appearance of the lesions found in affected brains. It is likely that prion diseases originate from a causative agent that replicates independently of nucleic acids. Current research assumes that a structural isoform of prion protein, the scrapie form PrPSc, is the responsible pathogen. The three-dimensional structure, but not the amino acid sequence of the isoform differs from that of the normal cellular isoform, PrPc. According to a widely accepted hypothesis, the normal isoform of the protein is converted by an autocatalytic process into the scrapie form upon contact with the latter. This hypothesis has not yet been proven. However, considerable progress has been made in the last few years, which might provide answers to many open questions about prion diseases, the subject of this review.  相似文献   

4.
5.
Wang Y  Feng L  Zhang B  Wang X  Huang C  Li Y  Du W 《Inorganic chemistry》2011,50(10):4340-4348
Many neurodegenerative disorders are induced by protein conformational change. Prion diseases are characterized by protein conformational conversion from a normal cellular form (PrP(C)) to an abnormal scrapie isoform (PrP(Sc)). PrP106-126 is an accepted model for studying the characteristics of PrP(Sc) because they share many biological and physiochemical properties. To understand how metal complexes affect the property of the prion peptide, the present work investigated interactions between Pd complexes and PrP106-126 based on our previous research using Pt and Au complexes to target the peptide. The selected compounds (Pd(phen)Cl(2), Pd(bipy)Cl(2), and Pd(en)Cl(2)) showed strong binding affinity to PrP106-126 and affected the conformation and aggregation of this active peptide in a different binding mode. Our results indicate that it may be the metal ligand-induced spatial effect rather the binding affinity that contributes to better inhibition on peptide aggregation. This finding would prove valuable in helping design and develop novel metallodrugs against prion diseases.  相似文献   

6.
Prion diseases are fatal neurodegenerative diseases thought to arise from the post-translational conversion of normal cellular prion protein to a scrapie isoform. Experimental data suggest a role for copper(II) ions in the process. An ab initio QM/MM approach and available experimental data were combined in order to identify and evaluate three potential copper(II) ion binding sites in the C-terminal portion of the normal cellular prion protein. Our results suggest that copper(II) ion binds to His 187 but not to His 140 and His 177 of the binding site in the cellular prion protein.  相似文献   

7.
Summary Evolutionary computing is a general optimization mechanism successfully implemented for a variety of numeric problems in a variety of fields, including structural biology. We here present an evolutionary approach to optimize helix stability in peptides and proteins employing the AGADIR energy function for helix stability as scoring function. With the ability to apply masks determining positions, which are to remain constant or fixed to a certain class of amino acids, our algorithm is capable of developing stable helical scaffolds containing a wide variety of structural and functional amino acid patterns. The algorithm showed good convergence behaviour in all tested cases and can be parameterized in a wide variety of ways. We have applied our algorithm for the optimization of the stability of prion protein helix 1, a structural element of the prion protein which is thought to play a crucial role in the conformational transition from the cellular to the pathogenic form of the prion protein, and which therefore poses an interesting target for pharmacological as well as genetic engineering approaches to counter the as of yet uncurable prion diseases. NMR spectroscopic investigations of selected stabilizing and destabilizing mutations found by our algorithm could demonstrate its ability to create stabilized variants of secondary structure elements.  相似文献   

8.
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper‐binding, cell‐surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrPC) and a disease‐associated isoform (PrPSc). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrPC into PrPSc. The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Cerebral formation of the pathological isoform of the prion protein (PrP) is a crucial molecular event in prion diseases. The bank vole (Clethrionomys glareolus) is a rodent species highly susceptible to natural scrapie. The PrP gene of bank vole is polymorphic (Met/Ile) at codon 109. Here we show that homozygous 109Met/Met voles have incubation times shorter than heterozygous 109Met/Ile voles after experimental challenge with three different scrapie isolates. An HPLC-MS/MS method was optimized and applied to investigate whether in heterozygous animals both PrP allotypes are able to undergo pathological conversion. The results demonstrate that both allotypes of the prion protein participate to pathological deposition.  相似文献   

10.
朊病毒和疯牛病中蛋白自由基化学问题的探讨   总被引:5,自引:0,他引:5  
杨池明  陈义 《化学通报》2000,63(1):60-62,59
20年来,人们一直认为朊蛋白病变是导致疯牛病的原因,但对其致病机制却一直未得出公认的结论。其中的“蛋白错折叠”学说被多数人所接受,然而无法解释病中的多菌株现象,在以往的研究中,朊蛋白病变从来没有与任何化学问题有过联系。近年,我们对哺乳动物所具有的此类脑神经疾病进行分析,认为蛋白氧化损伤所形成的序列专一的长寿命朊蛋白自由基所催化下的蛋白氧化交联,可能是致病的根本原因。  相似文献   

11.
In order to get deeper insight into the molecular forces responsible for prion pathogenic conversion, conformational properties of a synthetic linear peptide derived from the globular core of sheep prion protein were studied by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. The studied peptide encompassing the 〚142–166〛 (in human numbering) region of sheep prion protein, folds in physiological conditions into a β-hairpin like tertiary structure, whereas, in the non-pathogenic form of protein and in trifuoroethanol (TFE), the region is engaged in largely α-helical conformation. Such structural duality of the fragment indicates a possible transconformational site within prion protein and may explain one of the early structural causes of prion diseases.  相似文献   

12.
Understanding the structural basis that distinguishes the amyloid form of the prion protein from its monomeric homologue is of crucial importance to elucidate the mechanism of the lethal diseases related to this protein. Recently, an in vitro conversion system was established which reproduces the transition of recombinant prion protein PrP(23–230) from its native α‐helical rich form into an aggregated amyloid β‐sheet rich form with physicochemical properties reminiscent to those of the disease‐related isoform of the prion protein, PrPSc. To study the tertiary and quaternary structural organization within recombinant amyloid fibrils from mouse, mPrP(23–231)βf; bovine, bPrP(23–230)βf; and elk, ePrP(23–230)βf; we utilized hydrogen/deuterium (H/D) exchange analyzed by matrix‐assisted laser desorption/ionization (MALDI) and nano‐electrospray (nano‐ESI) mass spectrometry. No significant differences were found by measuring the deuterium exchange kinetics of the aggregated fibrillar forms for mPrP(23–231)βf, bPrP(23–230)βf and ePrP(23–230)βf, indicating a similar overall structural organization of the fibrils from all three species. Next, we characterized the solvent accessibility for the soluble and fibrillar forms of the mouse prion protein by hydrogen exchange, pepsin proteolysis and nano‐ESI ion trap mass spectrometry analysis. In its amyloid form, two highly protected regions of mPrP(23–231) comprising residues [24–98] and [182–212] were identified. The residues between the two highly protected stretches were found to be more solvent exposed, but less than in the soluble protein, and might therefore rather form part of a fibrillar interface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Conformational switching of the prion protein into the abnormal form involves the formation of (obligatory) molten‐oligomers that mature into ordered amyloid fibrils. The role of water in directing the course of amyloid formation remains poorly understood. Here, we show that the mobility of the water molecules within the on‐pathway oligomers is highly retarded. The water relaxation time within the oligomers was estimated to be ≈1 ns which is about three orders of magnitude slower than the bulk water and resembles the characteristics of (trapped) nano‐confined water. We propose that the coalescence of these obligatory oligomers containing trapped water is entropically favored because of the release of ordered water molecules in the bulk milieu and results in the sequestration of favorable inter‐chain amyloid contacts via nucleated conformational conversion. The dynamic role of water in protein aggregation will have much broader implications in a variety of protein misfolding diseases.  相似文献   

14.
The prion protein (PrP) is implicitly involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs). The conversion of normal cellular PrP (PrPC), a protein that is predominantly α-helical, to a β-sheet-rich isoform (PrPSc), which has a propensity to aggregate, is the key molecular event in prion diseases. During its short life span, PrP can experience two different pH environments; a mildly acidic environment, whilst cycling within the cell, and a neutral pH when it is glycosyl phosphatidylinositol (GPI)-anchored to the cell membrane. Ion mobility (IM) combined with mass spectrometry has been employed to differentiate between two conformational isoforms of recombinant Syrian hamster prion protein (SHaPrP). The recombinant proteins studied were α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5 and pH 7.0. The recombinant proteins have the same nominal mass-to-charge ratio (m/z) but differ in their secondary and tertiary structures. A comparison of traveling-wave (T-Wave) ion mobility and drift cell ion mobility (DCIM) mass spectrometry estimated and absolute cross-sections showed an excellent agreement between the two techniques. The use of T-Wave ion mobility as a shape-selective separation technique enabled differentiation between the estimated cross-sections and arrival time distributions (ATDs) of α-helical SHaPrP(90-231) and β-sheet-rich SHaPrP(90-231) at pH 5.5. No differences in cross-section or ATD profiles were observed between the protein isoforms at pH 7.0. The findings have potential implications for a new ante-mortem screening assay, in bodily fluids, for prion misfolding diseases such as TSEs.  相似文献   

15.
朊蛋白病是一种能够对人类和动物带来致命影响,并具有高度传染性的神经退行性疾病.兔子是目前已经报道的哺乳类动物中对朊蛋白病免疫的少数几个物种之一.我们将分子动力学和操控式分子动力学模拟相结合,研究了兔子正常朊蛋白的结构稳定性;同时讨论了蛋白结构的收敛性及刚性分布,并揭示了兔子朊蛋白中关键二级结构的动力学以及受力各向异性特征,证实了兔子朊蛋白结构的稳定性特征.  相似文献   

16.
Prions are a novel class of infectious pathogens that cause a group of fatal prion diseases in which the benign cellular form of the prion protein (PrP(C)) is transformed into the disease-related scrapie variant (PrP(SC)). The two PrP isoforms differ in their structure and resistance to degradation. The molecular mechanism by which the PrP(SC) is formed and causes infectivity or neurodegeneration is not known. In a compelling and emerging view, post-translational modifications (or the lack thereof) play roles in the transformation of PrP(C) to PrP(SC). Human PrP contains two consensus sites for N-linked glycosylation, at Asn181 and Asn197. From the functional standpoint, glycosylation can modify either the conformation of PrP(C), or the stability of PrP(SC) and, hence, the rate of PrP(SC) clearance. So far the NMR structures of only recombinant, non-glycosylated prions are known, while the structure of the glycosylated form is estimated by molecular modeling. A number of native amino acid mutations in PrP can be mapped near the glycosylation sites. Normal prion protein has been demonstrated to be a copper binding protein, and increasing evidence has shown correlation between the level of PrP expression and tolerance to oxidative stress. Moreover, histochemistry for nitrotyrosine is used for detection of neuronal labeling, a sign of a peroxynitrite-mediated neuronal degradation and a marker for nitrative stress in scrapie-infected mouse brains. It is an intriguing proposition that the post-translational modifications alone, or in combination with amino acid changes, play dominant roles in the pathogenic transformation of PrP(C) to PrP(SC).  相似文献   

17.
Transmissible spongiform encephalopathies in humans and in animals are fatal neuro-degenerative diseases with long incubation times. The putative cause of these diseases is a normal host protein, the prion protein, that becomes altered. This abnormal prion protein is found mostly in the brains of infected individuals in later stages of the disease, but also can be found in lymphoid and other tissues in lower amounts. In order to eradicate this disease in animals, it is important to develop a system that can concentrate the abnormal prion protein and an assay that is very sensitive. The sensitivity that can be achieved with capillary electrophoresis makes it possible to detect the abnormal protein in blood. A peptide from the carboxyl terminal region, amino acid positions 218-232, was labeled with fluorescein during the synthesis of the peptide at the amino terminus. Antibodies that have been produced to this peptide were affinity purified and used in a capillary electrophoresis immunoassay. The amount of fluorescein labeled peptide in the capillary was 50 amol. Blood was obtained from normal sheep and elk, from sheep infected with scrapie and elk infected with chronic wasting disease. Buffy coats and plasma were prepared by a conventional method. After treatment with proteinase K, which destroys the normal protein but not the altered one, the blood fractions were extracted and tested in the capillary electrophoresis immunoassay for the abnormal prion protein. The abnormal prion protein was detected in fractions from blood from infected animals but not from normal animals. This assay makes a pre-clinical assay possible for these diseases and could be adapted to test for the abnormal prion protein in process materials that are used for manufacture of pharmaceuticals and products for human consumption.  相似文献   

18.
《Chemistry & biology》1997,4(5):345-355
Background: Peptides derived from three of four putative α-helical regions of the prion protein (PrP) form amyloid in solution. These peptides serve as models for amyloidogenesis and for understanding the α helix → β strand conformational change that is responsible for the development of disease. Kinetic studies of amyloid formation usually rely on the detection of fibrils. No study has yet explored the rate of monomer peptide uptake or the presence of nonfibrillar intermediate species. We present a new electron spin resonance (ESR) method for probing the kinetics of amyloid formation. A spin label was covalently attached to a highly amyloidogenic peptide and kinetic trials were monitored by ESR.Results: Electron microscopy shows that the spin-labeled peptide forms amyloid, and ESR reveals the kinetic decay of free peptide monomer during amyloid formation. The combination of electron microscopy and ESR suggests that there are three kinetically relevant species: monomer peptide, amyloid and amorphous aggregate (peptide aggregates devoid of fibrils or other structures with long-range order). A rather surprising result is that amyloid formation requires the presence of this amorphous aggregate. This is particularly interesting because PrPSc the form of PrP associated with scrapie, is often found as an aggregate and amyloid formation is not a necessary component of prion replication or pathogenesis.Conclusions: Kinetic analysis of the time-dependent data suggests a model whereby the amorphous aggregate has a previously unsuspected dual role: it releases monomer into solution and also provides initiation sites for fibril growth. These findings suggest that the β-sheet-rich PrPSc may be stabilized by aggregation.  相似文献   

19.
Extensive molecular dynamic simulations (approximately 240 ns) have been used to investigate the conformational behavior of PrP106-126 prion peptide in four different environments (water, dimethyl sulfoxide, hexane, and trifluoroethanol) and under both neutral and acidic conditions. The conformational polymorphism of PrP106-126 in solution observed in the simulations supports the role of this fragment in the structural transition of the native to the abnormal form of prion protein in response to changes in the local environmental conditions. The peptide in solution is primarily unstructured. The simulations show an increased presence of helical structure in an apolar solvent, in agreement with the results from circular dichroism spectroscopy. In water solution, beta-sheet elements were observed between residues 108-112 and either residues 115-121 or 121-126. An alpha-beta transition was observed under neutral conditions. In DMSO, the peptide adopted an extended conformation, in agreement with nuclear magnetic resonance experiments.  相似文献   

20.
Prion diseases are characterized by a structural modification of the regular prion protein (PrP(C)) to its isoform, termed PrP(Sc)(scrapie). Such a modification involves the secondary and tertiary structure of the protein; the amino acidic sequence remains unchanged. PrP(Sc) is almost insoluble in non-denaturing solvents, resistant to proteases and it loses its redox activity. PrP(C) is able to bind copper and other metal ions: these complexes have been suggested to play an important role in the protein refolding leading to PrP(Sc). It is well-known that at least one relatively strong copper-binding site is located in the PrP(92--126) domain, where two His residues (96 and 111) are present. However, in the same domain, other amino acidic residues bear potentially donating atoms, i.e. Met, Asn and Lys residues. In order to shed light on the role of the side chains of such potentially tridentate amino acids on copper complexation, the polypeptide Ac-KTNMKHMA-NH(2), corresponding to the PrP(106--113) fragment, and some synthetic analogues have been investigated as ligands for the copper ion, by means of both thermodynamic and spectroscopic techniques. The pivotal role of imidazolic side chain of His in "anchoring" the metal ion has been confirmed. On the other hand, no clue was found on the participation of sulfur atom of Met or side amino-group of Lys residues to copper complex-formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号