首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S.G. Wang  R.Z. Wang  J.Y. Wu  Y.X. Xu 《Adsorption》2003,9(4):349-358
An adsorption ice-making machine has been built with a single consolidated adsorber and activated carbon-methanol pair. A consolidated adsorbent block made of activated carbon mixed with a binder with good heat transfer properties has been developed and implemented in the adsorber. The design is focused on the adsorber consisting of copper finned tubes and carbon blocks. Experimental tests have been performed suitable for ice making. This paper describes the experimental results of such an ice-maker operating with an intermittent cycle and a cycle time of 35 minutes. The thermal conditions used to test the cycle are: 115°C heat source, 22°C heat sink, the evaporator temperature corresponding to the chilled ethylene glycol temperature is –7°C. At this evaporating pressure, the mass transfer resistance controls the adsorption process. Test results show that the COP reaches 0.07 whereas the SCP (specific cooling power) is 11 W kg–1 activated carbon. A two-bed adsorptive prototype ice-making machine operating with a heat and mass recovery cycle has also been made for onboard adsorption refrigeration in fishing boats. Good performances have been achieved due to improved mass transfer and the new ice maker can produce 18–20 kg h–1 of flake ice at mean temperature of –7°C.  相似文献   

2.
The required durations of pressurization and depressurization steps of a rapid pressure swing adsorption process are primarily governed by adsorbent particle size, adsorption kinetics, column pressure drop, column length to diameter ratio, and the valve constant of the gas inlet and outlet control valve attached to the adsorbent column. A numerical model study of the influence of these variables for an adiabatic LiX zeolite column is presented using pure N2 as an adsorbate gas. An adsorbent particle size range of 200–350 μm was found to minimize (<1 s) the times required for the pressurization and depressurization steps.  相似文献   

3.
Corn grits have been tested as a desiccant in a pressure swing adsorption (PSA) system to produce dry air. Two sizes of unmodified corn grits were tested in the PSA system: 2.16 and 0.978 mm in diameter, which dried moist air to dew points of –42°C and –69°C, respectively. A modification technology has been developed for the corn grits that gives an increase in the operational adsorptive capacity in a pressure swing adsorption system, so that they remove as much moisture from air as molecular sieves at the same conditions. After modification, 2.16 mm corn grits dry moist air to a –56°C dew point and the 0.978 mm corn grits dry air to a –80°C dew point. The modification process creates surface modifications on the corn grits apparently making more adsorption sites easily available. The modification procedure increases the specific surface area of the grits and possibly decreases the crystallinity, which would make more hydroxyl groups available for adsorption of water. Possible applications of using corn grits in the pressure swing adsorption system include industrial gas dryers, sorptive cooling air conditioners, and recycling equipment for industrial solvents.  相似文献   

4.
Separation of olefin/paraffin is an energy-intensive and difficult separation process in petrochemical industry. Energy-efficient adsorption process is considered as a promising alternative to the traditional cryogenic distillation for separating olefin/paraffin mixtures. In this work, we explored the feasibility of adsorptive separation of olefin/paraffin mixtures using a magnesium-based metal-organic framework, Mg-MOF-74. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on a Mg-MOF-74 adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. A dual-site Sips model was used to correlate the adsorption equilibrium data, and a micropore diffusion model was applied to extract the diffusivities from the adsorption kinetics data. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to elucidate the adsorption mechanisms. The simulation results showed that all four adsorbate molecules are preferentially adsorbed on the open metal sites where each metal site binds one adsorbate molecule. Propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Adsorption equilibrium selectivity, combined equilibrium and kinetic selectivity, and adsorbent selection parameter for pressure swing adsorption processes were estimated. The relatively high values of adsorption selectivity suggest that it is feasible to separate ethylene/ethane, propylene/propane, and propylene/ethylene pairs in a vacuum swing adsorption process using Mg-MOF-74 as an adsorbent.  相似文献   

5.
In previous work by the authors on Na-A zeolite (Izumi et al., Japan Patent Toku-Kou-Shou 63-058614, 1988), it was shown that the combination of high-temperature calcination and operation of the adsorption step at low temperatures improved the selectivity for oxygen over nitrogen from air (Izumi et al., CATS J Meeting Abstracts, 31(2A), 10, 1989; Izumi and Suzuki, Adsorption, 6, 2000). Berlin discloses in his U.S. Patent 3282028 (1966) that the partial exchange of potassium ions for sodium ions in the Na-A type zeolite also improved selectivity for oxygen by reducing the uptake rate of nitrogen. It was therefore expected that the oxygen selectivity of Na-K-A with high-temperature calcination and low-temperature adsorption might be enhanced. For the confirmation of optimum conditions for the appearance of oxygen selectivity on Na-K-A, samples were prepared with a K exchange ratio varied from 0–20 mol% (0–2.4 K ions/unit cell), and a calcination temperature varied from 923 to 1073 K, and an experiment concerning oxygen and nitrogen adsorption on Na-K-A was undertaken with a small adsorbent column under pressure swing adsorption (PSA) conditions at adsorption temperatures from room temperature to 213 K. It was found that (a) the K exchange ratio of 7 mol% (0.84 K ions/unit cell), and (b) the calcination temperature of 993 K, resulted in a remarkable increase in oxygen selectivity. Under optimum conditions for Na-K-A, the oxygen separation factor was about 8. Na-K-A has the potential to effectively separate oxygen and nitrogen from air by means of PSA.  相似文献   

6.
Na-A type zeolite (Na-A) pellet showed a greater oxygen selectivity than Na-A powder (Izumi, J. and M. Suzuki, Adsorption, submitted; Izumi, J. et al., Japan Patent Toku-Kou-Shou 62-026808 (1987)). It was considered that a water adsorption at calcination stage influenced a window diameter shrinkage to increase the oxygen selectivity. For the confirmation of an optimum preparation condition for the oxygen selectivity enhancement of Na-A pellet, an experiment of oxygen and nitrogen adsorption on calcined Na-A was undertaken with a small adsorbent column under a pressure swing adsorption (PSA) condition at a temperature from 298 K to 213 K. It was found that the secondary calcination (953–1033 K) after the water vapor adsorption provided a remarkable increase of the oxygen selectivity. At the optimum condition for calcined Na-A, the oxygen separation factor is greater than 6. Calcined Na-A has a potential to separate oxygen and nitrogen from air by PSA effectively.  相似文献   

7.
The adsorption of cesium on manganese dioxide from aqueous solutions has been studied in relation to pertinent variables such as shaking time, pH, composition of aqueous solutions, mass of adsorbent (10 mg–1 g) and concentration of adsorbate (10–6–5·10–3 M), using a radiotracer technique. The influence of various anions and cations on cesium adsorption was examined. The distribution coefficient of a variety of other elements was determined under similar conditions. The adsorption of cesium obeys a Freundlich-type isotherm over the entire concentration range investigated, whereas the Langmuir-type isotherm is followed only at moderate concentrations.  相似文献   

8.
An equation for the internal pressure acting on an adsorbate in micropores was obtained on the basis of the assumption that the chemical potential of an adsorbate in micropores is equal to that in an equilibrium gas phase and using the Dubinin-Radushkevich equation. The empirical relation between the characteristic adsorption energy and the half width of pores was expressed in terms of internal pressure and diameter of adsorbate molecules. The two-dimensional pressure was calculated for micropores with plane-parallel walls, where the width of a micropore coincides with the diameter of an adsorbate molecule. The results obtained were compared with the two-dimensional pressure of a monolayer on a free planar surface for an adsorbate and adsorbent of the same nature.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1928–1930, October, 1995.  相似文献   

9.
S. Sircar 《Adsorption》1996,2(4):323-326
The capital and energy costs of production of oxygen enriched air by a rapid pressure swing adsorption (RPSA) process can be reduced by decoupling the air drying and the air separation duties of the process. Integration of the oxygen-RPSA process with an enhanced combustion application system allows thermal swing adsorption drying of air feed to the RPSA process. The air separation process then can be run using an ad(de)sorption pressure envelope of 2:1 atmospheres, which significantly reduces the cost and energy of operation of the air compressor.  相似文献   

10.
Incomplete pressure equalization (PE) is practiced in a commercial oxygen concentrator for medical use by adopting simultaneous PE and feed-pressurization for pressurizing an adsorption bed. In such a cycle configuration, extent of equalization during PE affects process performance. In order to assess the effect, performance of pressure swing adsorption (PSA) process with incomplete PE was determined by both simulations and experiments. In simulations, an equilibrium model was used with the assumptions of multicomponent Langmuir isotherms, isothermal operation, and no pressure drop through a bed. The required parameters for simulations were measured in separate experiments. PSA experiments were performed for a two-bed cycle with PE. Two kinds of pressurization, feed and product, were examined. Effects of purge amount and extent of equalization on process performance were assessed in view of productivity and light-component recovery. From the obtained results performance contours were constructed. 95 oxygen mole percent production from air with zeolite 13× was considered as a case study. In both pressurizations, an optimal specific purge and an extent of equalization for the productivity and recovery were observed, but with a different level of equalization. For a maximum productivity feed-pressurization favored incomplete PE, while a maximum recovery occurred at complete PE for both pressurizations. The simulations depicted well existence of optimum conditions, though they showed quantitative disagreement with experiments.  相似文献   

11.
The piston-driven ultra rapid pressure swing adsorption (URPSA) equipment was developed and oxygen enrichment from air was examined as an example. The adsorbent bed is directly connected to the cylinder where a piston moves at high frequency. Thus pressurization and depressurization in the bed are driven by mechanical piston motion, which can achieve far more rapid cycles compared with the conventional pressure swing operation using valves. The cycle time is usually on the order of seconds or sub seconds. Oxygen enrichment from air up to about 60% or higher of oxygen concentration was achieved by small-scale equipment using zeolite 5A with a oxygen production capacity of 100 Nm3-product gas/m3-zeolite/hr, which is about ten times larger than those of commercialized PSAs for this purpose.A simplified numerical model describing the mass transfer taking place in URPSA was developed. The model could simulate fairly well the air separation characteristics in terms of oxygen concentration, oxygen production capacity and oxygen yield. The proposed model helps in the understanding of the basic nature of URPSA and possible applications. This novel PSA is promising as a compact yet high-capacity PSA to be utilized in a wide variety of applications.  相似文献   

12.
In the present study a new low cost, easily available and environmentally friendly adsorbent was used for removal of Cr (VI). The Cr (VI) removal efficiency of the adsorbent was studied as a function of contact time, pH, adsorbent dose, adsorbate concentration, temperature and stirring speed. Different adsorption model equations for kinetics, isotherm and rate mechanism of the process were used to find the best model, which fit well to the experimental data. A full factorial design of nk type was used to find a mathematical relation between the percentage of adsorption and variables affecting the adsorption process such as time, pH, adsorbate concentration and temperature. Using the Students ‘t’ test, the significance of each term of the derived equation was tested. The insignificant terms were removed from the derived equation. The adequacy of the equation after removing the insignificant terms was tested using the Fisher adequacy test. From the factorial design analysis it is found that pH has the most pronounced effect followed by time, temperature and the adsorbate concentration. A column study was performed using the optimum operating conditions.  相似文献   

13.
The experimental investigation demonstrates that a setisfactory can be expected for pressure swing adsorption (PSA) purification of natural gas as raw material for thermal chlorination process.Using hh-4 molecular sieve as adsorbent for removing C2^ components,the suitable adsorption pressure is 0.4-0.45 MPa,desorption vacuum is 0.08-0.09 MPa and circulation time is 20-21 min.  相似文献   

14.
The dependences of the differential molar isosteric heat of adsorption and entropy of adsorption of CO2 on zeolite NaX were determined in wide temperature (196–423 K) and pressure (0.1 Pa to 5.4 MPa) intervals. In the initial region of adsorption (a < 1 mmol g–1), the differential molar heat of adsorption increases from 40 to 43 kJ mol–1 and then decreases to 33 kJ mol–1. The heat of adsorption remains virtually unchanged at 3 mmol g–1< a < 6.5 mmol g–1 and decreases sharply at high fillings of zeolite micropores (a > 7 mmol g–1). The heat of adsorption was found to be temperature-dependent. The region with the constant heats shrinks with the temperature increase, and the heats begin to decrease at lower fillings of micro pores. The dependences of the change in the differential entropy of the adsorption system on the amount adsorbed were calculated at different temperatures. The specific features of the behavior of the thermodynamic functions of this adsorption system in the initial and medium region of fillings kre associated with interactions of adsorbate molecules with Na+ cations and walls of large cavities. For high fillings, an increase in repulsion forces between adsorbed molecules results in a sharp expansion of the adsorbent and a decrease in the heat of adsorption.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1570–1573, August, 2004.  相似文献   

15.
The experimental investigation demonstrates that a satisfactory result can be expected for pressure swing adsorption (PSA) purification of natural gas as raw material for thermal chlorination process. Using hh-4 molecular sieve as adsorbent for removing C2 components, the suitable adsorption pressure is 0.4-0.45 MPa, desorption vacuum is 0.08-0.09 MPa and circulation time is 20-21 min.  相似文献   

16.
The research examined the development of adsorbent hollow fibres as a low pressure drop structure for the production of oxygen-enriched air. The potential benefits of using a low pressure drop flexible adsorbent structure with molecular sieving properties over a bed packed with pellets include a low attrition resistance which could extend the life of the adsorbent structure. Highly macroporous, highly adsorbent loaded (up to 90 wt%) fibres were produced. By increasing adsorbent density, the separative performance and nitrogen loading were improved. The separative performance of the adsorbent fibre was found to be slightly inferior to that of the bed of smaller 0.4–0.8 mm beads, as the diffusion path length was longer in the fibres and caused increased mass transfer resistances within the macroporous structure. The pressure drop through the fibre was found to be 40 to 70 times lower than that through an equivalent packed bed of 0.4–0.8 mm beads. This experimental feasibility study has demonstrated that the novel zeolite fibre configuration shows good potential for the production of oxygen-enriched air in a low energy, short cycle time, pressure swing process. The challenges of improving the performance of the adsorbent fibres and their operating parameters are described.  相似文献   

17.
Adsorption of mercury onto manganese dioxide was studied in relation to the concentrations of electrolyte, adsorbent and adsorbate and foreign ions. Adsorption of other metal ions under similar conditions was also measured. Adsorption decreases with increasing electrolyte concentration. Thiosulfate, thiocyanate, iodide and all cations tested suppress the adsorption; the greater the ionic potential of cation, the weaker the adsorption of mercury. Adsorption follows the Freundlich-type isotherm over a wide range of mercury concentration (10–7–10–8 g·ml–1). 98% of the adsorbed mercury can be eluted from the oxide column with 60 ml of 3M nitric acid solution.  相似文献   

18.
A new biosorbent has been prepared by coating Chrysophyllum albidum (Sapotaceae) seed shells with chitosan and/or oxidizing agents such as sulfuric acid. This study investigated the technical feasibility of activated and modified activated C. albidum seed shells carbons for the adsorption of chromium(VI) from aqueous solution. The sorption process with respect to its equilibria and kinetics as well as the effects of pH, contact time, adsorbent mass, adsorbate concentration and particle size on adsorption was also studied. The most effective pH range was found to be between 4.5 and 5 for the sorption of the metal ion. The pseudo-first-order rate equation by Lagergren and pseudo-second-order rate equation were tested on the kinetic data, the adsorption process followed pseudo-second-order rate kinetics, also, isotherm data was analyzed for possible agreement with the Langmuir and Freundlich adsorption isotherms, the Freundlich and Langmuir models for dynamics of metal ion uptake proposed in this work fitted the experimental data reasonably well. However, equilibrium sorption data were better represented by Langmuir model than Freundlich. The adsorption capacity calculated from Langmuir isotherm was 84.31, 76.23 and 59.63 mg Cr(VI)/g at initial pH of 3.0 at 30 °C for the particle size of 1.00–1.25 mm with the use of 12.5, 16.5 and 2.1 g/L of CACASC, CCASC and ACASC adsorbent mass, respectively. This readily available adsorbent is efficient in the uptake of Cr(VI) ion in aqueous solution, thus, it could be an excellent alternative for the removal of heavy metals and organic matter from water and wastewater.  相似文献   

19.
The results of measurements of time dependences for the formation rates of gaseous products and oxygen uptake rate in oxygen plasma treatment of a poly(ethylene terephthalate) film at discharge currents of 20–80 mA and a pressure ranging within 50–200 Pa are reported. The obtained data allow the authors to speculate on the mechanism of initiation of plasma-induced oxidative degradation of the material.  相似文献   

20.
Mathematical models for pressure swing adsorption (PSA) processes essentially require the simultaneous solutions of mass, heat and momentum balance equations for each step of the process using appropriate boundary conditions for the steps. The key model input variables needed for estimating the separation performance of the process are the multicomponent adsorption equilibria, kinetics and heats of adsorption for the system of interest. A very detailed model of an adiabatic Skarstrom PSA cycle for production of high purity methane from a ethylene-methane bulk mixture is developed to study the sensitivity of the process performance to the input variables. The adsorption equilibria are described by the heterogeneous Toth model which accounts for variations of isosteric heats of adsorption of the components with adsorbate loading. A linear driving force model is used to describe the kinetics. The study shows that small errors in the heats of adsorption of the components can severely alter the overall performance of the process (methane recovery and productivity). The adsorptive mass transfer coefficients of the components also must be known fairly accurately in order to obtain precise separation performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号