首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 °C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 °C for Pb and 800 °C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box–Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L− 1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%.  相似文献   

2.
The phase-separation phenomenon of nonionic surfactants occurring in an aqueous solution was used for the extraction of Cd and Zn from water samples. After complexation with 6-(4-nitrophenyl)-2,4-diphenyl-3,5-diaza-bicyclo[3.1.0]hex-2-ene (NDDBH) in hydrochloric acid medium (pH 1), the analytes were quantitatively extracted after centrifugation into the phase rich in the nonionic surfactant octylphenoxypolyethoxyethanol (Triton X-114). Tetrahydrofuran acidified with 0.1 M HCl was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry. The adopted concentrations for NDDBH, Triton X-114 and hydrochloric acid were all optimized. Detection limits (3σ) of 0.33 and 0.85 ng/mL along with enrichment factors of 157 and 118 for Cd and Zn, respectively, were achieved. The proposed method was applied to the determination of Cd and Zn in acidic solutions of certified reference materials. A comparison with certified values was performed for an evaluation of the accuracy, resulting in a good agreement according to the t-test at a 95% confidence level. The high efficiency of the cloud-point extraction to carry out the determination of the studied analytes in complex matrices was, therefore, demonstrated. The text was submitted by the authors in English.  相似文献   

3.
《Analytical letters》2012,45(6):972-982
A new on-line cloud point extraction system coupled to inductively coupled plasma optical emission spectrometry was designed for simultaneous extraction, preconcentration and determination of trace amounts of platinum and palladium in platinum-palladium spent catalysts. This was based on the complexation of the metal ions with 1,8-diamino-4,5-bis(hydroxyamino)anthraquinone reagent in the presence of non-ionic surfactant of Triton X-114. After phase separation, the surfactant-rich phase was diluted with concentrated HNO3 (70%, w/w); the analytes concentrations were determined by inductively coupled plasma-optical emission spectrometry. Several factors influencing the instrumental conditions and extraction were evaluated and optimized. Under the optimum conditions, the enhancement factors of the proposed method were 35.4 and 29 for platinum and palladium, respectively. The detection limits were 0.3 and 0.45 µ g L?1. Finally, the developed method was successfully applied to the extraction and determination of platinum and palladium in platinum-palladium spent catalysts samples and satisfactory results were obtained.  相似文献   

4.
Cloud point extraction (CPE) and solid phase extraction (SPE) methods were developed for the determination of ??g l?1 of vanadium ions in surface, tap and bottled mineral water samples, based on the rapid reaction of vanadium(V) with 8- hydroxyquinoline (8-quinolinol) at pH 3?C5. Both the sensitive extraction methods were successfully employed for the preconcentration of V in real samples. For CPE, V complexed with 8-quinolinol and then was entrapped in non-ionic surfactant Triton X-114, while for SPE, V was adsorbed on XAD -2 impregnated with 8-quinolinol. The experimental conditions for SPE (pH, eluent, and contact time between the liquid sample and the resin) and CPE (pH of sample solution, concentration of 8- quinolinol and Triton X-114, equilibration temperature and time period for shaking) were investigated in detail. The validity of SPE/CPE of V was checked by certified reference material of water (SRM-1643e). The extracted surfactant-rich phase (200 ??l) was mixed with 200 ??l of HNO3 in ethanol and this final volume was injected into electrothermal atomic absorption spectrometry with different modifiers. Under these conditions, the preconcentration of 25 ml sample solution allowed the raising of an enrichment factor of 100 and 10 folds for CPE and SPE, respectively. The concentration of V in surface water (river and lake), tap water and bottled mineral water samples was found to be in the range of 1.30?C19.9, 1.05?C5.25 and 0.67?C1.21 ??g l?1, respectively.  相似文献   

5.
《Analytical letters》2012,45(18):2894-2907
A heating procedure is reported with slurry sampling electrothermal atomic absorption spectrometry to improve the accuracy of cadmium determination in food. In comparison to conventional slurry sampling, the heating significantly increased cadmium recovery and improved the precision. For the optimized procedure, 25–250 mg of food were treated with 2% HNO3 and 1% H2O2 with heating at 120°C for 20 min, followed by the addition of 50 µL of 10% Triton X-100, and homogenization in an ultrasonic bath prior to analysis. Tungsten and rhodium were employed as a permanent modifier with optimum pyrolysis and atomization temperatures of 500°C and 1500°C. Calibration with aqueous standards resulted in good agreement between certified or information values and measured results at the 95% confidence level. A characteristic mass of 0.8 ± 0.1 pg and a detection limit of 0.7 ng g?1 for a 2% slurry were obtained. The method was employed for the direct determination of cadmium in food certified reference materials.  相似文献   

6.
This paper describes the extraction/pre-concentration of Zn from diesel oil and its determination by Flame Atomic Absorption Spectrometry (FAAS), proposed as a novel approach for these kinds of analyses and the multivariate optimization of the proposed procedure. The extraction of Zn is based on the emulsification of an aqueous solution containing Triton X-114 and HNO3 with diesel oil samples followed by breaking of the emulsion by heating. The aqueous phase obtained after the emulsion breaking was collected and used for Zn quantification by FAAS. The methodology was optimized using a Doehlert design and the system variables were the concentrations of surfactant and HNO3 in the solution employed in the emulsification and the temperature used in the emulsion breaking. The ratio between absorbance and the time required to break the emulsions was taken as response. Two sets of experiments, using different emulsifier agents, were run: the first one using Triton X-100 and the second one using Triton X-114. At optimized conditions, the emulsions were prepared by mixing 10 mL of diesel oil with 2 mL of a solution containing 5% w/v of Triton X-114 and 15% v/v of HNO3 and broken by heating at 80 °C. The proposed analytical procedure was applied in the analysis of six real samples of diesel oil and a recovery test was carried out by spiking the samples with known amounts of Zn (25 and 50 μg L−1), added as organometallic oiled standard. Recovery percentages achieved in this test were between 92 and 109%.  相似文献   

7.
The present work evaluated the use of iridium (Ir) as permanent modifier for the determination of total selenium in urine and serum by graphite furnace atomic absorption spectrometry. Concerning urine, the presence of trimethylselenonium (TMSe+) was especially considered. Pyrolysis and atomization temperatures of 1,000 and 2,100°C, respectively, were used. For nondigested urine and serum samples, 0.2% v/v HNO3 and Triton X-100 were used as diluents, respectively, and the same initial platform Ir treatment was effective for up to 1,100 atomization cycles. Good precision [less than 5% relative standard deviation (RSD)] can be achieved with the proposed method. Low TMSe+ recovery was observed for nondigested urine samples. Thus, if this species is to be considered in urine analysis, a previous external mineralization step was found to be necessary. Alternatively, an in situ oxidation treatment was developed. Detection limits of 8, 10, and 7 μg l−1 were obtained after dilution, microwave-assisted digestion, and in situ oxidation procedures, respectively. The accuracy of the method was validated by the analysis of certified reference or commercial quality control materials and spiked samples.  相似文献   

8.
Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO3)2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO3)2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g−1) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g−1 for Cd, 18 pg and 17 ng g−1 for Pb, and 0.7 pg and 4 ng g−1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials.  相似文献   

9.
This paper describes a micelle-mediated phase separation in the presence of electrolyte as a preconcentration method for cadmium determination by flame atomic absorption spectrometry (FAAS). Cadmium was complexed with ammonium O,O-diethyldithiophosphate (DDTP) in an acidic medium (0.32 mol l 1 HCl) using Triton X-114 as surfactant and quantitatively extracted into a small volume (about 20 μl) of the surfactant-rich phase after centrifugation. The chemical variables that affect the cloud point extraction, such as complexing time (0–20 min), Triton X114 concentration (0.043–0.87% w/v) and complexing agent concentration (0.01–0.1 mol l 1), were investigated. The cloud point is formed in the presence of NaCl at room temperature (25 °C), and the electrolyte concentration (0.5–5% w/v) was also investigated. Under optimized conditions, only 8 ml of sample was used in the presence of 0.043% w/v Triton X-114 and 1% (w/v) NaCl. This method permitted limits of detection and quantification of 0.9 μg l 1 and 2.9 μg l 1 Cd, respectively, and a linear calibration range from 3 to 400 μg l 1 Cd. The proposed method was applied to Cd determination in physiological solutions (containing 0.9% (w/v) of NaCl), mineral water, lake water and cigarette samples (tobacco).  相似文献   

10.
The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO3, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.  相似文献   

11.
Cadmium, lead, copper and manganese were determined in human deciduous teeth and bone ash 1400 standard reference material by electrothermal atomic absorption spectrometry (ETAAS), using a lanthanum + palladium + citric acid (CA) modifier mixture. Optimum masses and mass ratios of La, La + Pd and La + Pd + CA modifiers for analytes in bone ash 1400 sample solution were investigated. Pyrolysis and atomization temperatures of analytes in a tooth sample solution were obtained with and without modifiers. The mixture of La + Pd + CA was found to be preferable for the determination of analytes in tooth samples and bone ash 1400, dissolved in a mixture of HNO3 + H2O2. The detection limits and characteristic masses of analytes were obtained with or without modifiers based on integrated absorbance for tooth sample solution (2% m/v). The detection limits obtained with La + Pd + CA are 6,24,16 and 46 ng g?1 for Cd, Cu, Mn and Pb, respectively. Recovery tests for analytes in bone ash 1400 and a tooth solution with La and La + Pd + CA modifier mixture were studied and compared with certified and non certified values. The La + Pd + CA mixture was also applied to the determination of Cd, Pb, Cu and Mn in tooth samples.  相似文献   

12.
A cloud point extraction (CPE) method has been developed for the preconcentration of trace aluminum prior to its determination by flame atomic absorption spectrometry (FAAS). The CPE method is based on the complex of Al(III) with Xylidyl Blue (XB) and then entrapped in non-ionic surfactant Triton X-114. The main factors affecting CPE efficiency, such as pH of sample solution, concentration of XB and Triton X-114, equilibration temperature and time, were investigated in detail. An enrichment factor of 50 was obtained for the preconcentration of Al(III) with 50 mL solution. Under the optimal conditions, the detection limit of this method for Al(III) is 1.43 μg L− 1, and the relative standard deviation is 2.7% at determination of 100 μg L− 1 Al(III). The proposed method has been applied for determination of trace amount of aluminum in mineral water samples with satisfactory results. Also, the proposed method was applied to the certified reference materials. The results obtained were in good agreement with certified values.  相似文献   

13.
The feasibility of using cloud-point extraction as a simple and effective means of recovery of memantine from rat plasma before LC–MS analysis has been demonstrated. A non-ionic surfactant Triton X-114 was used for extraction of the memantine. On increasing the temperature to the cloud point, phase separation occurred, resulting in an aqueous phase, and a surfactant-rich phase containing most of the analytes. The extraction conditions, for example amount of surfactant, temperature, NaOH concentration, and time of incubation, were optimized. Chromatographic separation was accomplished on a C18 analytical column with 56:44 (v/v) methanol–0.2% aqueous formic acid as isocratic mobile phase at a flow rate of 0.8 mL min?1. Under the optimum experimental conditions recovery was satisfactory (91–101%) without interference from the surfactant. The method was shown to be reproducible and reliable with intraday precision below 6.6%, interday precision below 14.3%, and linear range from 1 to 400 ng mL?1. The method was successfully applied to a pharmacokinetic study of memantine in rats after oral and intravenous administration.  相似文献   

14.
The effects of copper, ascorbic acid and Triton X-100 on the atomization process of Ag are presented as a function of the initial mass of analyte and the heating rate of atomization. In general, a double pulse structure is detected, at a heating rate of 300 K s−1, in the absorbance profile and its time derivative. This behavior shows up in the Arrhenius plots as two temperature regions of atomization. In the presence of Cu and Triton X-100, a low atomization energy Ea is obtained in the low temperature region and a high value of Ea, which approaches the heat of vaporization of Ag, is obtained in the high temperature region. However, in the presence of ascorbic acid, two low desorption energies are obtained in both temperature regions, suggesting a higher dispersion of particles owing to the presence of a higher number of active sites. At a heating rate of 700 K s−1, a single atomization step with an atomization energy of 233 kJ mol−1 and a first kinetic order of release is detected in the presence of Cu. However, in the presence of ascorbic acid and Triton X-100, two temperature regions of atomization are obtained from the Arrhenius plots, even though the absorbance profiles look continuous. In these cases, a mass dependent Ea is obtained in the low temperature region, and a low Ea with a first kinetic order of release is obtained in the high temperature region. In summary, the low value of Ea indicates vaporization from disperse particles, whereas the mass dependent, higher value of Ea indicates atomization from small clusters, the size and energy of which increase as the initial mass of Ag increases.The structure of the absorbance profiles and their time derivatives, and also the behavior of the Arrhenius plots, correlate well with those predicted by the two-precursor atomization model proposed in our previous work [1].  相似文献   

15.
The investigation of trace metal contents in hair can be used as an index of exposure to potentially toxic elements. Direct determination of Cd, Cu and Pb in slurries of hair samples was investigated using an atomic absorption spectrometer with Zeeman-effect background correction. The samples were pulverized in a freezer/mill for 13 min, and hair slurries with 1.0 g l−1 for the determination of Cu and Pb, and 5.0 g l−1 for the determination of Cd, respectively, were prepared in three different media: 0.1% v/v Triton X-100, 0.14 mol l−1 HNO3, and 0.1% v/v of CFA-C, a mixture of tertiary amines. The easiest way to manipulate the hair samples was in CFA-C medium. The optimum pyrolysis and atomization temperatures were established with hair sample slurries spiked with 10 μg l−1 Cd2+, 30 μg l−1 Pb2+, and 10 μg l−1 Cu2+. For Cd and Pb, Pd was used as a chemical modifier, and for Cu no modifier was needed. The analyte addition technique was used for quantification of Cd, Cu, and Pb in hair sample slurries. A reference material (GBW076901) was analyzed, and a paired t-test showed that the results for all elements obtained with the proposed slurry sampling procedure were in agreement at a 95% confidence level with the certified values. The cryogenic grinding was an effective strategy to efficiently pulverize hair samples.  相似文献   

16.
A simple separation procedure for noble metals based on cloud point extraction is proposed. The analyte ions in aqueous acidic solution, obtained by the acid digestion of the samples, were complexed with O,O-diethyl-dithiophosphate and Triton X-114 was added as a non-ionic surfactant. By increasing the temperature up to the cloud point, a phase separation occurs, resulting in an aqueous phase and a surfactant-rich phase containing most of the analytes that were complexed. The metals in the surfactant-rich phase were determined by electrothermal vaporization inductively coupled plasma mass spectrometry. The extraction conditions as well as the instrumental parameters were optimized. Enrichment factors ranging from 7 (Rh) to 60 (Pt) and limits of detection from 0.6 (Pt) to 3.0 ng l−1 (Rh) were obtained in the digested samples. The extraction was not efficient for Ir. Among the reference materials analyzed in this work, only one (SRM 2670, urine) presented recommended values for Au and Pt. Due to the non-availability of adequate CRMs, accuracy was assessed by spiking known analyte amounts to the acid digests. Recoveries close to 100% were observed for all the studied elements but Ru. Poor agreement between found and recommended values was observed for non-digested urine sample, probably due to the carrier effect of co-extracted residual matrix components. However, good agreement was reached after urine acid mineralization.  相似文献   

17.
A sensitive and selective method has been developed for the determination of chromium in water samples based on using cloud point extraction (CPE) preconcentration and determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Cr(III) ions with Brilliant Cresyl Blue (BCB) in the presence of non-ionic surfactant Triton X-114. Under the optimum conditions, the preconcentration of 50 mL of water sample in the presence of 0.5 g/L Triton X-114 and 1.2 × 10−5 M BCB permitted the detection of 0.42 μg/L chromium(III). The calibration graph was linear in the range of 1.5–70 μg/L, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Cr(III) in water samples and certified water samples. In addition, the developed CPE-FAAS method was also used for speciation of the inorganic chromium species after reduction of Cr(VI) to Cr(III) using a thiosulphate solution of 120 mg/L in the presence of Hg(II) ion as a stabilizer.  相似文献   

18.
A new approach for developing a cloud point extraction-electrothermal atomic absorption spectrometry has been described and used for determination of arsenic. The method is based on phase separation phenomenon of non-ionic surfactants in aqueous solutions. After reaction of As(V) with molybdate towards a yellow heteropoly acid complex in sulfuric acid medium and increasing the temperature to 55 °C, analytes are quantitatively extracted to the non-ionic surfactant-rich phase (Triton X-114) after centrifugation.To decrease the viscosity of the extract and to allow its pipetting by the autosampler, 100 μl methanol was added to the surfactant-rich phase. An amount of 20 μl of this solution plus 10 μl of 0.1% m/v Pd(NO3)2 were injected into the graphite tube and the analyte determined by electrothermal atomic absorption spectrometry.Total inorganic arsenic(III, V) was extracted similarly after oxidation of As(III) to As(V) with KMnO4. As(III) was calculated by difference. After optimization of the extraction condition and the instrumental parameters, a detection limit (3σB) of 0.01 μg l−1 with enrichment factor of 52.5 was achieved for only 10 ml of sample. The analytical curve was linear in the concentration range of 0.02-0.35 μg l−1. Relative standard deviations were lower than 5%. The method was successfully applied to the determination of As(III) and As(V) in tap water and total arsenic in biological samples (hair and nail).  相似文献   

19.
A novel nonchromatographic speciation technique for the speciation of mercury by sequential cloud point extraction (CPE) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed. The method based on Hg2+ was complexed with I to form HgI42−, and the HgI42− reacted with the methyl green (MG) cation to form hydrophobic ion-associated complex, and the ion-associated complex was then extracted into the surfactant-rich phase of the non-ionic surfactant octylphenoxypolyethoxyethanol (Triton X-114), which are subsequently separated from methylmercury (MeHg+) in the initial solution by centrifugation. The surfactant-rich phase containing Hg(II) was diluted with 0.5 mol L− 1 HNO3 for ICP-OES determination. The supernatant is also subjected to the similar CPE procedure for the preconcentration of MeHg+ by the addition of a chelating agent, ammonium pyrrolidine dithiocarbamate (APDC), in order to form water-insolvable complex with MeHg+. The MeHg+ in the micelles was directly analyzed after disposal as describe above. Under the optimized conditions, the extraction efficiency was 93.5% for Hg(II) and 51.5% for MeHg+ with the enrichment factor of 18.7 for Hg(II) and 10.3 for MeHg+, respectively. The limits of detection (LODs) were 56.3 ng L− 1 for Hg(II) and 94.6 ng L− 1 for MeHg+ (as Hg) with the relative standard deviations (RSDs) of 3.6% for Hg(II) and 4.5% for MeHg+ (C = 10 μg L−1, n = 7), respectively. The developed technique was applied to the speciation of mercury in real seafood samples and the recoveries for spiked samples were found to be in the range of 93.2–108.7%. For validation, a certified reference material of DORM-2 (dogfish muscle) was analyzed and the determined values are in good agreement with the certified values.  相似文献   

20.
The potential of the cloud point methodology for the preconcentration of relatively polar compounds was studied using the non-ionic surfactant Triton X-114 and five EPA chlorophenols as test analytes. Analyte determination was performed using reversed-phase gradient LC with electrochemical and spectrophotometric detection. The amount of surfactant used is a critical variable in the preconcentration factor because it determines the extraction yield and the volume of surfactant-rich phase obtained. These values were determined as a function of the Triton X-114 concentration, together with the phase ratio, which allows prediction of the maximum preconcentration factor under given conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号