首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High lithiation capacity at low red-ox potentials in combination with good safety characteristics makes amorphous Si as a very promising anode material for rechargeable Li batteries.Thin film silicon electrodes were prepared by DC magnetron sputtering of silicon on stainless steel substrates. Their behavior as Li insertion/extraction electrodes was studied by voltammetry and chronopotentiometry at room temperature in the ionic liquid (IL) 1-methyl-1-propylpiperidinium bis(trifluoromethylsuphonil)imide containing 1 M Li bis(trifluoromethylsuphonil)imide. Li/Si cells containing this electrolyte showed good performance with a stable Si electrodes capacity of about 3000 mA h g−1 and a relatively low irreversible capacity. Preliminary results on cycling Si–LiCoO2 cells using this IL electrolyte are also presented.  相似文献   

2.
Tetraethylene glycol dimethylether-lithium bis(oxalate)borate (TEGDME-LiBOB) electrolyte is here studied. Electrochemical impedance spectroscopy (EIS) measurements demonstrate that the electrolyte has conductivity higher than 10− 3 S cm− 1 at room temperature and about 10− 2 S cm− 1 at 60 °C, while thermogravimetry indicates a stability extending up to 180 °C. Sweep voltammetry of the electrolyte shows anodic stability extending over 4.6 V vs. Li and cathodic peak at about 1.5 V vs. Li/Li+, caused by a decomposition of LiBOB salt, and following prevented by using a pre-treated Sn-C anode. Furthermore, LiFePO4 electrode is successfully used as cathode in a lithium cell using the TEGDME-LiBOB electrolyte. The promising electrochemical results, the low cost and the very high safety level candidate the electrolyte here reported as a valid alternative to the conventional electrolyte based on fluorinated salts presently used in the lithium ion battery field.  相似文献   

3.
A novel partly silanized ether solvent of 12,12-diethyl-2,5,8-trioxa-12-silatetradecane is proposed for Li/organo-sulfide or Li/S battery in this paper. It is superior to other ether solvent in high boiling point, high flash point and thus resulted high safety. The conductivity of it-contained electrolyte was measured to be 5.7 × 10−4 S/cm at 25 °C, which meets the requirement for practical application. Anodic polarization curve of it-contained electrolyte attests to its strong resistivity to electro-oxidation, and AC impedance measurement also approves that it has a good compatibility with lithium electrode. Cycling test of Li/1 M LiTFSI in 12,12-diethyl-2,5,8-trioxa-12-silatetradecane/PABTH cell indicates a good utilization of the active material in the new electrolyte system.  相似文献   

4.
Electrochemical properties and overcharge behavior of N-phenylmaleimide (NPM) as a new polymerizable electrolyte additive for overcharge protection of lithium-ion batteries are studied by cyclic voltammetry, charge–discharge performance, electrochemical impedance spectroscopy and scanning electron microscopy (SEM). The results show that NPM can electrochemically polymerize at the overcharge potential of 3.8–4.2 V (vs. Li/Li+) and form a thin polymer film on the surface of the cathode, thus preventing voltage runaway. On the other hand, the use of NPM as an overcharge protection electrolyte additive does not influence the normal performance of lithium-ion batteries.  相似文献   

5.
Organic ionic plastic crystal (OIPC) electrolytes are among the key enabling materials for solid-state and higher than ambient temperature lithium batteries. This work overviews some of the parameter studies on the Li|OIPC interface using lithium symmetrical cells as well as the optimisation and performance of Li|OIPC|LiFePO4 cells. The effects of temperature and electrolyte thickness on the cycle performance of the lithium symmetrical cell, particularly with respect to the interfacial and bulk resistances, are demonstrated. Whilst temperature change substantially alters both the interfacial and bulk resistance, changing the electrolyte thickness predominantly changes the bulk resistance only. In addition, an upper limit of the current density is demonstrated, above which irreversible processes related to electrolyte decomposition take place. Here, we demonstrate an excellent discharge capacity attained on LiFePO4|10 mol% LiNTf2-doped [C2mpyr][NTf2]|Li cell, reaching 126 mAh g-1 at 50 °C (when the electrolyte is in its solid form) and 153 mAh g-1 at 80 °C (when the electrolyte is in its liquid form). Most remarkably, at high temperature operation, the capacity retention at long cycles and high current is excellent with only a slight (3%) drop in discharge capacity upon increasing the current from 0.2 C to 0.5 C. These results highlight the real prospects for developing a lithium battery with high temperature performance that easily surpasses that achievable with even the best contemporary lithium-ion technology.  相似文献   

6.
Room temperature ionic liquid (RTIL) was prepared on basis of N-methyl-N-butylpiperidinium bis(trifluoromethanesulfonyl)imide (PP14TFSI), which showed a wide electrochemical window (?0.1–5.2 V vs. Li+/Li) and is theoretically feasible as an electrolyte for batteries with metallic Li as anodes. The addition of vinylene carbonate (VC) improved the compatibility of PP14TFSI-based electrolyte towards lithium anodes and enhanced the formation of solid electrolyte interphase film to protect lithium anodes from corrosion. Accordingly, Li/LiFePO4 cells initially delivered a discharge capacity of about 127 mAh g?1 at a current density of 17 mA g?1 in the ionic liquid with the addition of VC and showed better cyclability than in the neat ionic liquid. Electrochemical impedance spectroscopy disclosed that the addition of VC enhanced Li-ion diffusion and depressed interfacial resistance significantly.  相似文献   

7.
Two different approaches were tried for an improvement of the cycle performance of Li–S cells: (1) A mixed polymer binder system of polyvinyl pyrrolidone (PVP) and polyethyleneimine (PEI) was developed to maintain the initial morphology of the carbon electrodes, the positive electrode of the Li–S cells, during charge–discharge cycles; (2) a tetrabutylammonium (TBA)-based mixed salt system was applied to an organic liquid electrolyte of the Li–S cells to change certain chemical reactions of polysulfides in the electrolyte solutions. The Li–S cells with PEI showed a significant improvement in cycle performance as well as in discharge capacity, compared with the Li–S cells using PVP only. The discharge capacity at the 50th cycle was found to be ∼580 mAh/g-sulfur, 83% of an initial capacity (∼720 mAh/g-sulfur), at a high current density of 2.0 mA cm−2. It was observed that the Li–S cells with a mixed electrolyte of 0.5 M LiCF3SO3/0.5 M TBAPF6 did not show a distinct improvement in the aspect of discharge capacity. The Li–S cells, however, showed a significant enhancement in the cycle life characteristics much better than that of Li–S cells with 1.0 M LiCF3SO3.  相似文献   

8.
The newly created porous inorganic particles Li4.7Ag1.63GeS4.8 as filler are added into poly (ethylene oxide) (PEO) with LiTFSI salt, which greatly improves the electrochemical stability of solid-state PEO-based electrolytes against Li metal in a working battery. Due to many pores and channels in the filler, Li dendrites would grow along these channels thereby effectively inhibiting their fast spread in PEO matrix and retarding the short circuit on account of the penetration of Li dendrite. The Li+ conductivity of this solid-state electrolyte membrane could be 1.36 × 10-4 S/cm at 40 °C. The fabricated symmetrical Li metal cells could cycle above 550 h at 0.05 mA/cm2 and corresponding LiFePO4/Li all-solid-state cells have an excellent cycling stability of 160.65 mAh g-1 specific capacity after 200 cycles with 99.93% columbic efficiency at 50 °C environment.  相似文献   

9.
We developed an electrochemical in situ cell for soft x-ray emission spectroscopy (XES) to accurately investigate the redox reaction and electronic structure of transition metals in the cathode materials for Li–ion battery. The in situ cell consists of a Li–metal counter electrode, an organic electrolyte solution, and a cathode on a membrane window which separates the liquid electrolyte from high vacuum and can pass the incoming and emitted photons. In this study, the Mn 3d electronic structure of LiMn2O4 thin-film electrode was clarified by the operando XES. At the charged state, the XES spectrum changed significantly from the open-circuit-voltage (OCV) state, suggesting oxidation of the Mn3 + component through Li–ion extraction. Upon discharge up to 3.0 V vs. Li/Li+, the XES spectrum almost returned to its profile at the OCV state with small difference, indicating the valence change of Mn: Mn3.6 +  Mn4 +  Mn3.3 + corresponding to the OCV, charged, and discharged states.  相似文献   

10.
This paper describes the use of aluminum and zinc as anodic materials for a battery employing nickel (II) oxide (NiO) as cathode. Comparison of both materials resulted in the development of a compact, cost effective, and easy to use primary NiO/Al battery employing an alkaline electrolyte. The system features electrodes composed of powder forms of the active materials on modified paper substrates that are contained in a simple multilayer design utilizing thin laminated plastic materials to provide structure and flexibility to the battery as well as a paper separator. Various concentrations of potassium hydroxide (KOH) electrolyte were examined and maximum performance was observed at 6 M KOH. A maximum current density and power density of 1.94 mA/cm2 and 1 mW/cm2, respectively was achieved. This user-friendly device was able to produce a maximum capacity of 2.33 mAh/g when 2 mA/g was applied. This work demonstrates the viability of a paper-based battery featuring powder electrodes as a possible power source for microelectronic devices.  相似文献   

11.
Early stages of the solid electrolyte interphase (SEI) formation at a tin foil electrode in an ethylene carbonate (EC) based electrolyte were investigated by in situ AFM and cyclic voltammetry (CV) at potentials >0.7 V, i.e., above the potential of Sn–Li alloying. We detected and observed initial steps of the surface film formation at ~2.8 V vs. Li/Li+ followed by gradual film morphology changes at potentials 0.7 < U < 2.5 V. The SEI layer undergoes continuous reformation during the following CV cycles between 0.7 and 2.5 V. The surface film on Sn does not effectively prevent the electrolyte reduction and a large fraction of the reaction products dissolve in the electrolyte. The unstable SEI layer on Sn in EC-based electrolytes may compromise the use of tin-based anodes in Li-ion battery systems unless the interfacial chemistry of the electrode and/or electrolyte is modified.  相似文献   

12.
Chlorine (Cl)-based batteries such as Li/Cl2 batteries are recognized as promising candidates for energy storage with low cost and high performance. However, the current use of Li metal anodes in Cl-based batteries has raised serious concerns regarding safety, cost, and production complexity. More importantly, the well-documented parasitic reactions between Li metal and Cl-based electrolytes require a large excess of Li metal, which inevitably sacrifices the electrochemical performance of the full cell. Therefore, it is crucial but challenging to establish new anode chemistry, particularly with electrochemical reversibility, for Cl-based batteries. Here we show, for the first time, reversible Si redox in Cl-based batteries through efficient electrolyte dilution and anode/electrolyte interface passivation using 1,2-dichloroethane and cyclized polyacrylonitrile as key mediators. Our Si anode chemistry enables significantly increased cycling stability and shelf lives compared with conventional Li metal anodes. It also avoids the use of a large excess of anode materials, thus enabling the first rechargeable Cl2 full battery with remarkable energy and power densities of 809 Wh kg−1 and 4,277 W kg−1, respectively. The Si anode chemistry affords fast kinetics with remarkable rate capability and low-temperature electrochemical performance, indicating its great potential in practical applications.  相似文献   

13.
Solid electrolyte interface (SEI) is a critical factor that influences battery performance. SEI layer is formed by the decomposition of organic and inorganic compounds after the first cycle. This study investigates SEI formation as a product of electrolyte decomposition by the presence of flouro-o-phenylenedimaleimaide (F-MI) additive. The presence of fluorine on the maleimide-based additive can increase storage capacity and reversible discharge capacity due to high electronegativity and high electron-withdrawing group. The electrolyte containing 0.1 wt% of F-MI-based additive can trigger the formation of SEI, which could suppress the decomposition of remaining electrolyte. The reduction potential was 2.35 to 2.21 V vs Li/Li+ as examined by cyclic voltammetry (CV). The mesocarbon microbeads (MCMB) cell with F-MI additive showed the lowest SEI resistance (Rsei) at 5898 Ω as evaluated by the electrochemical impedance spectroscopy (EIS). The morphology and element analysis on the negative electrode after the first charge-discharge cycle were examined by scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and X-ray photoelectron spectroscopy (XPS). XPS result showed that MCMB cell with F-MI additive provides a higher intensity of organic compounds (RCH2OCO2Li) and thinner SEI than MCMB cell without an additive that provides a higher intensity of inorganic compound (Li2CO3 and Li2O), which leads to the performance decay. It is concluded that attaching the fluorine functional group on the maleimide-based additive forms the ideal SEI formation for lithium-ion battery.  相似文献   

14.
We have successfully developed a new process to prepare porous poly(methyl methacrylate-co-acrylonitrile) (P(MMA-AN)) copolymer based gel electrolyte. The porous structure in the polymer matrix is achieved by adding SnO2 nanoparticles which are mostly used as gas sensor materials. The quasi-aromatic solvent, NMP, has an electron-repulsion effect with the space charge layer on the surface of SnO2 nanoparticles and forms a special gas–liquid phase interface. Once the cast polymer solution is stored at an elevated temperature to evaporate the solvent, gas–liquid phase separation happens and spherical pores are obtained. The ionic conductivity at room temperature of the prepared gel polymer electrolyte based on the porous membrane is as high as 1.54 × 10−3 S cm−1 with the electrochemical stability up to 5.10 V (vs. Li/Li+). This method presents another promising way to prepare porous polymer electrolyte for practical use.  相似文献   

15.
Safety concerns pose a significant challenge for the large‐scale employment of lithium–sulfur batteries. Extremely flammable conventional electrolytes and dendritic lithium deposition cause severe safety issues. Now, an intrinsic flame‐retardant (IFR) electrolyte is presented consisting of 1.1 m lithium bis(fluorosulfonyl)imide in a solvent mixture of flame‐retardant triethyl phosphate and high flashpoint solvent 1,1,2,2‐tetrafluoroethyl‐2,2,3,3‐tetrafluoropropyl (1:3, v/v) for safe lithium–sulfur (Li?S) batteries. This electrolyte exhibits favorable flame‐retardant properties and high reversibility of the lithium metal anode (Coulombic efficiency >99 %). This IFR electrolyte enables stable lithium plating/stripping behavior with micro‐sized and dense‐packing lithium deposition at high temperatures. When coupled with a sulfurized pyrolyzed poly(acrylonitrile) cathode, Li?S batteries deliver a high composite capacity (840.1 mAh g?1) and high sulfur utilization of 95.6 %.  相似文献   

16.
Li metal is considered an ideal anode material because of its high theoretical capacity and low electrode potential. However, the practical usage of Li metal as an anode is severely limited because of inevitable parasitic side reactions with electrolyte and dendrites formation. At present, single-component artificial solid electrolyte interphase cannot simultaneously meet the multiple functions of promoting ion conduction, guiding lithium ion deposition, inhibiting dendrite growth, and reducing ...  相似文献   

17.
A new kind of polymer electrolyte is prepared from N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP1.3TFSI), polyethylene oxide (PEO), and lithium bis (trifluoromethanesulfonyl) imide (LiTFSI). IR and X-ray diffraction results demonstrate that the addition of ionic liquid decreases the crystallization of PEO. Thermal and electrochemical properties have been tested for the solid polymer electrolytes, the addition of the room temperature molten salt PP1.3TFSI to the conventional P(EO)20LiTFSI polymer electrolyte leads to the improvement of the thermal stability and the ionic conductivity (x = 1.27, 2.06 × 10−4 S cm−1 at room temperature), and the reasonable lithium transference number is also obtained. The Li/LiFePO4 cell using this polymer electrolyte shows promising reversible capacity, 120 mAh g−1 at room temperature and 164 mAh g−1 at 55 °C.  相似文献   

18.
An azamacrocyclic compound (1,4,8,11-tetraazacyclotetradecane, cyclam), which forms strong chelate complexes with metal ions such as Mn(II) and Fe(II), is tested as an electrolyte additive to suppress metal deposition. The tetradentate cyclic ligand is electrochemically stable within the working voltage of lithium-ion batteries (0.0–4.5 V vs. Li/Li+), hence it is practicable as an electrolyte additive. Deposition of Mn on a graphite electrode, which is severe when a Li/graphite cell is cycled in a Mn(II)-containing electrolyte solution, is greatly suppressed by adding cyclam. Our elemental analysis reveals negligible Mn deposits on a graphite electrode indicating the beneficial role of cyclam. The suppression of metal deposition is further indicated by the absence of an internal short between Li metal and lithium cobalt oxide positive electrode.  相似文献   

19.
Despite the high specific capacity of Li−S battery, shuttle effect of lithium polysulfides (LiPSs) and safety issue pose a great challenge to realize its commercial application. Replacing liquid electrolyte with poly (ethylene oxide) (PEO) -based solid-state electrolyte is considered as a promising method to boost the safety, but the shuttle effect of LiPSs cannot be completely eliminated. In this work, a new kind of double-layer PEO-based polymer electrolyte is designed to restrict the LiPSs. The layer next to cathode consists of PEO and poly(vinylpyrrolidone) (PVP). The other layer consists of PEO. PVP with abundant of amide groups has been proved to have strong affinity to LiPSs. The strong interaction between LiPSs and carbonyl groups in amide is verified by Attenuated Total Reflection-Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy tests. As a result, the assembled Li−S battery exhibits a specific capacity of 1100 mAh g−1 and capacity retention of 347 mAh g−1 after 200 cycles at 60 °C and 0.05 C, while the capacity retention of the battery without PVP-blended PEO electrolyte remains only 27 % at the same conditions.  相似文献   

20.
The low Coulombic efficiency and serious safety issues resulting from uncontrollable dendrite growth have severely impeded the practical applications of lithium (Li) metal anodes. Herein we report a stable quasi‐solid‐state Li metal battery by employing a hierarchical multifunctional polymer electrolyte (HMPE). This hybrid electrolyte was fabricated via in situ copolymerizing lithium 1‐[3‐(methacryloyloxy)propylsulfonyl]‐1‐(trifluoromethanesulfonyl)imide (LiMTFSI) and pentaerythritol tetraacrylate (PETEA) monomers in traditional liquid electrolyte, which is absorbed in a poly(3,3‐dimethylacrylic acid lithium) (PDAALi)‐coated glass fiber membrane. The well‐designed HMPE simultaneously exhibits high ionic conductivity (2.24×10?3 S cm?1 at 25 °C), near‐single ion conducting behavior (Li ion transference number of 0.75), good mechanical strength and remarkable suppression for Li dendrite growth. More intriguingly, the cation permselective HMPE efficiently prevents the migration of negatively charged iodine (I) species, which provides the as‐developed Li‐I batteries with high capacity and long cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号