首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
该文构筑了双荧光发射的比例型荧光传感器,并将其用于萘普生检测。以Eu3+为金属节点,1,3,5-苯三甲酸为配体,通过超声法合成了比例型荧光传感材料Eu-MOF。探究了Eu-MOF的形貌特征、光学性质及对萘普生的检测机理。单一激发光照射下,Eu-MOF呈现源于配体和Eu3+的双荧光发射峰。萘普生的荧光发射峰与Eu-MOF在375 nm处的荧光发射峰重合,且两者之间具有内滤光效应。因此,随着萘普生的逐渐加入,Eu-MOF在375 nm处的荧光发射峰强度逐渐增强,而623 nm处则逐渐减弱,从而可实现对萘普生的比例荧光检测。Eu-MOF检测萘普生的线性范围为0.07~2.3μmol/L,检出限为0.039μmol/L。Eu-MOF在萘普生的检测中表现出良好的选择性和抗干扰能力,是实际样品中萘普生检测的优势材料。  相似文献   

2.
A red–green–blue (RGB) trichromophoric fluorescent organic nanoparticle exhibiting multi‐colour emission was constructed; the blue‐emitting cationic oligofluorene nanoparticle acted as an energy‐donor scaffold to undergo fluorescence resonance energy transfer (FRET) to a red‐emitting dye embedded in the nanoparticle (interior FRET) and to a green‐emitting dye adsorbed on the surface through electrostatic interactions (exterior FRET). Each FRET event occurs independently and is free from sequential FRET, thus the resultant dual‐FRET system exhibits multi‐colour emission, including white, in aqueous solution and film state. A characteristic white‐emissive nanoparticle showed visible responses upon perturbation of the exterior FRET efficiency by acceptor displacement, leading to highly sensitive responses toward polyanions in a ratiometric manner. Specifically, our system exhibits high sensitivity toward heparin with an extremely low detection limit.  相似文献   

3.
Xiang H  Zhou L  Feng Y  Cheng J  Wu D  Zhou X 《Inorganic chemistry》2012,51(9):5208-5212
A series of new platinum(II) 5,15-bis(pentafluorophenyl)-10,20-bis(phenyl)porphyrin-9,9-dioctylfluorene copolymers, in which the relative intensities of the blue fluorescence and red phosphorescence can be easily tuned by the initial feed ratio of the two monomers or energy transfer between the fluorescent and phosphorescent units, have been designed and prepared for the application in ratiometric dual emissive oxygen sensing. To the best of our knowledge, this is the first example of a ratiometric oxygen sensor based on dual fluorescent/phosphorescent polymers or copolymers containing transition-metal complexes. It also provides an alternative and easy way to achieve dual emissive oxygen sensing.  相似文献   

4.
In this work, we have designed and synthesized the compound Ratio-HPSSC, based on a tetrakis(4-hydroxyphenyl)porphyrin-coumarin scaffold, as a new ratiometric fluorescent probe for thiols. The ratiometric probe Ratio-HPSSC is highly selective and sensitive to thiols. Importantly, the novel ratiometric probe exhibited a remarkable change in emission color from red to blue. This key feature allows Ratio-HPSSC to be employed for thiol detection by simple visual inspection. Furthermore, we have demonstrated that Ratio-HPSSC is suitable for ratiometric fluorescence imaging of thiols in living cells. We believe that the new ratiometric probe will find interesting applications in chemistry, biology, and medicine.  相似文献   

5.
Cui L  Zhong Y  Zhu W  Xu Y  Du Q  Wang X  Qian X  Xiao Y 《Organic letters》2011,13(5):928-931
Based on the hypoxia prodrug moiety of p-nitrobenzyl, a selective ratiometric fluorescent sensor (RHP) for the detection of microenvironment hypoxia was designed and synthesized. RHP can be selectively activated by bioreductive enzymes (NTR) and results in an evident blue to green fluorescent emission wavelength change in both solution phases and in cell lines, which might be the first fluorescent ratiometric probe for hypoxia in solid tumors.  相似文献   

6.
5-amino-l,10-phenanthroline (5-AP), as a tautomeric heterocyclic aromatic chelating fluorophore (THACF), can sense Zn^2+ selectively by shifting emission from 495 to 564 nm upon Zn^2+ addition in ethanol. The ratiometric fluorescent sensing behavior has been correlated to the tautomerization of 5-AP affected by solvents and metal chelation. The strategy using THACF as ratiometric fluorescent sensor for Zn^2+ not only simplifies the synthetic procedure but also gives a promising alternative for Zn^2+ ratiometric fluorescent sensor design.  相似文献   

7.
Novel polyphenylacetylene ( P1 ) containing naphthalimides units in the side chain was designed and synthesized. The structure and properties of the polymer were characterized and evaluated by IR, NMR, UV, and PL. The measurements of sensing behavior to various halide anions, that is, F?, Cl?, Br?, and I?, reveal that the polymer is a ratiometric fluorescent chemosensors for fluoride ion. The polymer sensor shows spectral shifts and intensity changes in the presence of fluoride, in a wavelength‐ratiometric and ‐colorimetric manner, which can detect fluoride concentrations in range of 10–100 μM at visible wavelengths. The obvious colorless‐to‐yellow color change and blue‐to‐orange emission color change on the addition of fluoride ion are easily observed by naked eyes. It provides a feasible way to construct a ratiometric fluorescent chemosensors for fluoride ion. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1544–1552, 2009  相似文献   

8.
The discrimination and detection of phosphate anions have attracted extensive attention due to their important roles in various biological processes. Compared with sensors to detect one individual phosphate at a time, sensor arrays are able to discriminate multiple phosphates simultaneously. In this study, we developed a rare earth ions enhanced AuNCs-based sensor array to achieve facile and rapid identification of phosphate anions (PPi, ADP and ATP). The rare earth ions (i. e., Ce3+, Gd3+, Tm3+ and Yb3+) can significantly enhance the fluorescence of AuNCs through aggregation-induced emission effect. And the subsequent addition of phosphate anions can recover the fluorescence of the AuNCs-rare earth ions assembly. Thanks to the different numbers of phosphate group and different steric hindrance effects of phosphate anions, the recovery fluorescence of AuNCs-rare earth ions assembly induced by PPi, ADP or ATP are respectively distinct. Thus the sensor array composed of AuNCs and different rare earth ions is able to distinguish those phosphate anions. Finally, the sensor array was successfully demonstrated to identify the phosphates in blind samples.  相似文献   

9.
Intracellular pH affects protein structure and function, and proton gradients underlie the function of organelles such as lysosomes and mitochondria. We engineered a genetically encoded pH sensor by mutagenesis of the red fluorescent protein mKeima, providing a new tool to image intracellular pH in live cells. This sensor, named pHRed, is the first ratiometric, single-protein red fluorescent sensor of pH. Fluorescence emission of pHRed peaks at 610 nm while exhibiting dual excitation peaks at 440 and 585 nm that can be used for ratiometric imaging. The intensity ratio responds with an apparent pK(a) of 6.6 and a >10-fold dynamic range. Furthermore, pHRed has a pH-responsive fluorescence lifetime that changes by ~0.4 ns over physiological pH values and can be monitored with single-wavelength two-photon excitation. After characterizing the sensor, we tested pHRed's ability to monitor intracellular pH by imaging energy-dependent changes in cytosolic and mitochondrial pH.  相似文献   

10.
In this work, we develop a simple and rapid sensing method for the visual and fluorescent detection of acetamiprid (AC) based on the inner-filter effect (IFE) of gold nanoparticles (AuNPs) on ratiometric fluorescent quantum dots (RF-QDs). The RF-QDs based dual-emission nanosensor was fabricated by assembling green emissive QDs (QDs539 nm, λem = 539 nm) on the surface of red emissive QDs (QDs661 nm, λem = 661 nm)-doped silica microspheres. The photoluminescence (PL) intensity of RF-QDs could be quenched by AuNPs based on IFE. Acetamiprid can adsorb on the surface of AuNPs due to its cyano group that has good affinity with gold, which could induce the aggregation of AuNPs accompanying color change from red to blue. Thus, the IFE of AuNPs on RF-QDs was weakened and the PL intensity of RF-QDs was recovered accordingly. Under the optimized conditions, the PL intensity of the RF-QDs/AuNPs system was proportional to the concentration of AC in the range of 0.025–5.0 μg mL−1, with a detection limit of 16.8 μg L−1. The established method had been used for AC detection in environmental and agricultural samples with satisfactory results.  相似文献   

11.
Lanthanide metal–organic frameworks (Ln-MOFs) are promising for luminescence detection of volatile organic compound (VOC) vapors, but usually suffer from the silent or quenched Ln3+ emission. Herein, we report a new dual-emissive Eu-MOF composed of the coordinatively unsaturated Eu9 clusters that afford abundant open metal sites to form a confined “binding pocket” to facilitate the preconcentration and recognition of VOCs. Single-crystal structural analyses reveal that specific analytes can replace the OH oscillators in the first coordination sphere of Eu3+ and form a unique hydrogen-bonding second-sphere adduct tying adjacent Eu9 clusters together to minimize their nonradiative vibrational decay. With the promoted Eu3+ luminescence, the MOF realizes real-time in situ visual sensing of THF vapor (<1 s) and shows a quantitative ratiometric response to the vapor pressure with a limit of detection down to 17.33 Pa. Also, it represents a top-performing ratiometric luminescent thermometer.  相似文献   

12.
A fluorescent ratiometric Hg2+ ion sensor RMS, based on a coumarin platform coupled with a tetraamide receptor, is presented. This sensor, employing the ICT mechanism, could be used to specifically detect Hg2+ ions in a neutral buffered water solution with an approximately 100-nm blue shift in emission spectra.  相似文献   

13.
The development of a dual probe that provides ratiometric measurements of fluid viscosity is described. The design is based on coupling of a primary fluorophore with viscosity-independent fluorescence emission (blue unit) with a secondary fluorophore that exhibits viscosity-sensitive fluorescent emission quantum yield (red unit). Excitation of the secondary fluorophore can be achieved via Resonance Energy Transfer. The ratio of the fluorescence emission of these fluorophores provides an accurate, ratiometric measurement of solvent viscosity.  相似文献   

14.
Glutathione (GSH) plays a critical role in maintaining oxidation-reduction homeostasis in biological systems. Considering the detection of GSH by fluorescence sensors is limited by either the short wavelength emission or the poor photostability, a highly stable colorimetric and ratiometric NIR fluorescent sensor (DCM-S) for GSH detection has been constructed on the basis of dicyanomethylene-4H-pyran (DCM) chromophore. The specific disulfide bond is incorporated via a carbamate linker as the GSH responsive group, which simultaneously blue-shifts and quenches the fluorescence. Upon addition of GSH, DCM-S exhibits outstanding colorimetric (from yellow to red) and ratiometric fluorescent response with the 6-fold enhancement of NIR fluorescence at 665 nm in quantum yield. More importantly, the GSH-treated DCM-S (DCM-NH2 actually) possesses 20-fold longer fluorescence half-life period as well as much better photostability than the FDA-approved ICG. Finally, the ratiometric detection of GSH is also successfully operated in the living cell imaging, exhibiting NIR fluorescence and large Stokes shift (215 nm) with nearly no background fluorescence interference. As a consequence, DCM-S can be utilized as colorimetric and ratiometric NIR fluorescent sensor for GSH, with a great potential in the development of GSH-induced drug delivery system.  相似文献   

15.
A color distinctive, ratiometric pH sensor was demonstrated using pH responsive and fluorescent (PyMMP-b-P2VP) diblock copolymer coated CdSe/ZnS QDs. Due to the change in the P2VP conformations in response to pH change, the color of QDs in solution changes distinctly from blue to red.  相似文献   

16.
A novel fluorescent ratiometric chemosensor based on 4-pyren-1-yl-pyrimidine (PPM) has been designed and prepared for the detection of Hg2+ in the presence of other competing metal ions in acetonitrile. The photo exhibits fluorescence color change of PPM from blue to green without and with Hg2+, which red shift of wavelength about 105 nm in fluorescence emission spectra. It can serve as a highly selective chemodosimeter for Hg2+ with ratiometric and naked-eye detection. The photophysical properties of PPM confirmed a 2:1 (PPM–Hg2+) binding model and the spectral response toward Hg2+ was proved to be reversible.  相似文献   

17.
The novel tetraphenylethylene(TPE)-based sensor 1 bearing bis(2-pyridin-2-ylmethyl)amine (BPA) units linked with triazole moieties could be obtained by click reaction efficiently. The results show that 1 can demonstrate a Ag+-specific emission shift and highly sensitive fluorescent enhancement with a 1:2 binding ratio based on the aggregation-induced emission mechanism. Compound 1 is shown to behave as a ratiometric sensor.  相似文献   

18.
D-色氨酸为保护剂和还原剂, 采用水热法快速制备了具有强荧光的金纳米簇(D-Trp@AuNCs); 以其作为荧光探针, 建立了基于荧光猝灭的选择性高灵敏检测Fe3+的传感方法. 利用透射电子显微镜(TEM)、 紫外-可见光谱(UV-Vis)和红外光谱(IR)等手段对制备的金纳米簇进行了表征, 并利用荧光光谱研究了D-Trp@AuNCs的荧光性能. 结果表明, D-Trp@AuNCs具有较好的生物相容性, 其最大激发波长为370 nm, 最大发射波长为460 nm; 向金纳米簇溶液中加入Fe3+后, D-Trp@AuNCs的荧光发生明显猝灭, 其猝灭程度与Fe3+的浓度在0.3~500.0 μmol/L范围内呈现良好的线性关系, 检出限为33.1 nmol/L(S/N=3). 将该荧光探针用于实际水样中Fe3+的检测, 回收率为86.6%~106.5%.  相似文献   

19.
We report the synthesis of a new pyrene, dipicolinic acid-based ligand ( L1H ) and its corresponding multi-emissive and multifunctional europium complex [Eu( L1 )3] that is capable of single component color switchable emission from red to blue and also white. At high concentration (10 mM) the single component system results in near pure white emission (CIE coordinates x,y=0.329, 0.324). Furthermore, the system showed ratiometric oxygen sensing with oxygen significantly quenching the pyrene centered emission but not the Eu3+ emission, resulting in an overall emission color change from blue to red on increasing oxygen content.  相似文献   

20.
Ratiometric sensing of fluoride anions based on a BODIPY-coumarin platform   总被引:1,自引:0,他引:1  
Cao X  Lin W  Yu Q  Wang J 《Organic letters》2011,13(22):6098-6101
Based on a new coumarin-BODIPY platform, compound 4 was rationally designed and synthesized as a novel ratiometric fluorescent sensor for fluoride anions. The sensor exhibited a large red shift (88 nm) in absorption and a drastic ratiometric fluorescent response (I(472)/I(606) = 17.4) to fluoride anions. Density function theory and time-dependent density function theory calculations were conducted to rationalize the optical response of the sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号