首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Single- and double-pulse laser-induced breakdown spectroscopy (LIBS) was applied on aluminum samples at atmospheric pressure in air. In the case of the double-pulse scheme, experiments were carried out with an ablation laser emitting at 532 nm and a reheating laser emitting at 1064 nm in an orthogonal beam geometry. With the use of a 1-m focal length monochromator and an echelle spectrometer both equipped with an intensified charge coupled device (ICCD), the studies on the effect of the delay between the two laser pulses displayed optimum enhancements of line emissions only at 200 ns in the reheating scheme developed here. The experimental parameters, like the signal acquisition delay, were largely studied. The line intensity enhancements were also investigated in dependence on physical parameters, such as the excitation energy levels of the lines observed. Moreover, the relative importance of ionic and neutral lines in the emission spectra was precisely characterized. From the different investigations, the behaviors of the line emissions towards the double-pulse technique were related to their excitation energy levels. A correlation between the increases in intensity and the excitation energy levels of the line emissions was highlighted. As a result, the reheating scheme showed improvements of sensitivity for elements emitting ionic lines compared with the corresponding single-pulse experiments.  相似文献   

2.
Two Nd:YAG lasers emitting at 532 nm were combined in the same direction (collinear beam geometry) for double-pulse laser-induced breakdown spectroscopy studies on aluminum samples at atmospheric pressure in air. The influence of the delay between the two laser pulses was investigated for the background emission, for lines detected in aluminum samples and for atmospheric lines with different detection systems (photomultiplier tube, Czerny–Turner spectrometer and echelle spectrometers). The optimization of the delay between the two laser pulses depended on the excitation energy levels of the emission lines: two optima of interpulse delays were observed in the collinear geometry. Different regimes of laser–plasma interactions were discussed depending on the interpulse delay for aluminum samples. Furthermore, the effect of the sampling geometry, in terms of lens-to-sample distance, focal length of the focusing lens, was studied to determine parameters influencing the single- and double-pulse scheme. Besides, the analytical performance of the system was evaluated to characterize the advantages of the double-pulse laser-induced breakdown spectroscopy in terms of improvement of sensitivity and reduction of self-absorption effect for aluminum samples.  相似文献   

3.
Double-pulse laser-induced breakdown spectroscopy studies were performed on different types of materials (synthetic glasses, rocks, steels). Two Nd : YAG lasers emitting at 532 nm were combined in the collinear beam geometry to carry out double-pulse experiments at atmospheric pressure in air. For all matrices, the influence of the delay between the two laser pulses was systematically investigated from temporal and spectral analyses. Furthermore, the correlation between the excitation energy levels of the emission lines and the increases in intensity induced by the double-pulse scheme was described for each material. A comparison of the studies displayed different behaviors of the materials in the double-pulse experiments. An interpretation of the results is provided on the basis of the determination of the plasma temperatures in the single- and double-pulse configuration with the Saha–Boltzmann plot method. It also gave an insight into the potentialities and the limitations of the double-pulse laser-induced breakdown spectroscopy (LIBS) for analytical purpose so that the materials can be classified in terms of effectiveness of the double-pulse approach.  相似文献   

4.
Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researchers have reported significant increases in signal-to-noise and/or spectral intensity compared to single-pulse (SP) LIBS. In addition to DP-LIBS, atmospheric conditions can also increase sensitivity. Thus, in this study, a collinear DP-LIBS scheme was used along with manipulation of the atmospheric conditions. The DP-LIBS scheme consisted of an initial 45-mJ pulse at 1,064-nm fired into a sample contained in a controlled atmospheric/vacuum chamber. A second analytical 45-mJ pulse at 1,064-nm was then fired 0 to 200 μs after and along the same path of the first pulse. Ar, He, and air at pressures ranging from atmospheric pressure to 1 Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, significant increases in the spectral intensities of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air. It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. While collinear DP-LIBS is effective for increasing the sensitivity for some reduced atmospheres (i.e., Ar and air at 630 to 100 Torr and He at 300 Torr), the enhanced spectral intensity ultimately dropped off as the pressure was reduced below 10 Torr for all atmospheric compositions in the experimental arrangement used in this study. At all pressures of air and Ar, the plasma temperature remained rather constant with increased inter-pulse delays; however, the plasma temperature was more variable for different He gas pressures and inter-pulse delays.  相似文献   

5.
This paper investigates the optimization of double-pulse collinear femtosecond laser-induced breakdown spectroscopy (FLIBS) for silicon. Double-pulse FLIBS signal enhancements were observed over an extended range of sample focal plane position compared to single pulse FLIBS. The FLIBS signal intensity was studied as a function of pulse energy, inter-pulse delay (0 ps‑80 ps) and sample position. Correlation between crater volume and signal intensity was measured over a limited range of the sample focal plane position. It was found that double-pulse FLIBS is superior to single pulse for certain focal plane positions.  相似文献   

6.
Double-pulse laser-induced plasma spectroscopy (DP-LIPS) is applied to submerged targets to investigate its feasibility for elemental analysis. The role of experimental parameters, such as inter-pulse delay and detection time, has been discussed in terms of the dynamics of the laser-induced bubble produced by the first pulse and its confinement effect on the plasma produced by the second laser pulse. The analytical performance of this technique applied to targets in a water environment are discussed. The elemental analysis of submerged copper alloys by DP-LIPS has been compared with conventional (single-pulse) LIBS in air. Theoretical investigation of the plasma dynamics in water bubbles and open air has been performed.  相似文献   

7.
Double-pulse laser-induced breakdown spectroscopy (DP-LIBS) was optimized for microspatial analyses of fossil and recent snake vertebrae. As complimentary techniques, solution analysis by inductively coupled plasma mass spectrometry and synchrotron radiation X-ray microtomography was utilized in order to determine the overall concentration of the selected elements in the samples and to visualize nondestructively the fossil sample microstructure, respectively. Elemental mapping of pathological bony tissue by DP-LIBS has been proven as a powerful tool for considering the osteitis deformans phases in fossil vertebrae.  相似文献   

8.
Single-pulse and double-pulse laser-induced breakdown spectroscopy experiments have been performed using two Nd:YAG lasers in the fundamental mode on a brass sample at different air pressures, ranging from 0.1 Torr to atmospheric conditions, in order to obtain information about the different ablation and plasma evolution processes in the different configurations. Neutral and ionized lines originated both by species deriving from the target and from the air environment were analysed. The temperature and electron density values were estimated in all the experimental conditions. A different behavior of the plasma emission versus the air pressure, in the case of lines deriving from the target, was observed in the single-pulse and double-pulse configurations, suggesting that the different environmental conditions in the first and the second laser ablation may be responsible in determining the plasma emission in the two cases. An interpretative model based on the cavity produced in air by the laser-induced shock wave, according to the Sedov theory of the blast wave expansion, was able to qualitatively describe the effects observed in single-pulse and double-pulse experiments.

Besides, the influence of the interpulse delay time between the two laser pulses was explored in the range between 0 and 20 μs. The results, according to the model proposed, provide information on the plume evolution in the single-pulse and double-pulse configurations at different air pressures. In particular, different optimum interpulse delays were found for the observation of neutral lines and ionic lines.  相似文献   


9.
Laser induced breakdown spectroscopy (LIBS) is an emerging technique for fast and accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS on different technical polymers such as polyamide, polyvinyl chloride, polyethylene etc. Polymer samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (8 ns pulse duration) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different delay times between the laser pulses (from 20 ns to 500 μs) at a laser wavelength of 532 nm. We observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the delay time and the type of polymer material investigated. LIBS signals of polymer materials that are enhanced by double-pulse excitation may be useful for monitoring the concentration of heavy metals in polymer materials.  相似文献   

10.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

11.
Limits of detection have been studied for several elements in aluminium and steel alloys, at atmospheric pressure in air, by use of the single and collinear double-pulse configurations of laser-induced breakdown spectroscopy. For this purpose, calibration plots were constructed for Mg, Al, Si, Ti, Cr, Mn, Fe, Ni, and Cu using a set of certified aluminium alloy samples and a set of certified steel samples. The investigation included optimization of the experimental conditions to furnish the best signal-to-noise ratio. Inter-pulse delay, gate width, and acquisition delay were studied. The detection limits for the elements of interest were calculated under the optimum conditions for the double-pulse configuration and compared with those obtained under the optimum conditions for single-pulse configuration. Significantly improved detection limits were achieved, for all the elements investigated, and in both aluminium and steel, by use of the double-pulse configuration. The experimental findings are discussed in terms of the measured plasma conditions (particle and electron density, and temperature).  相似文献   

12.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

13.
14.
Single- and double-pulse laser-induced breakdown spectroscopy techniques applied to the analysis of pressed pellets of silicate raw materials were compared in terms of precision, sensitivity and limits of detection. Two Nd:YAG lasers (1064 and 532 mm) in an orthogonal configuration with a reheating arrangement have been employed. The main factors influencing system performance were optimized, i.e. laser pulse energies and interpulse separation. The behaviour of plasma temperature was studied over a period of time and calibration curves for Mg were constructed for both the single and double-pulse setup. When comparing the single- and double-pulse techniques, limits of detection of Si and Mg for the double-pulse technique were found to be 10 times lower.  相似文献   

15.
Corrosion is one of the main reasons for in-core accidents in liquid sodium-cooled fast reactors, especially accidents due to fuel cladding pipe damage. It is urgently required to investigate what kind of compound is produced as a corrosion product after the interaction between stainless steel and sodium in fast breeder reactors (FBR). In this work, the identification and quantification of sodium contaminant on steel surfaces has been conducted using laser-induced breakdown spectroscopy utilizing the specific characteristics of a pulse transversely excited atmospheric CO2 laser. Experimentally, a pulse TEA CO2 laser (Shibuya, 10.64 μm, 200 ns) was directed and bombarded onto the sodium contaminant deposited on the surface of stainless steel. An excellent emission spectrum of sodium from the contaminant was obtained without any disturbance from analytical lines from the steel itself. A quantification of sodium contaminant on the steel surface has been successfully made by a linear calibration curve obtained from steel containing various concentrations of sodium. The limit of detection of sodium on the metal surface was estimated to be 0.5 mg/kg. Also, a comparative sodium analysis study was qualitatively made by using LIBS utilizing a pulse Nd:YAG laser. The results demonstrate that the present technique of TEA CO2 LIBS is far superior to the case of Nd:YAG LIBS, as proven by an excellent emission spectrum of sodium with optimum intensity, and low noise and background emission.  相似文献   

16.
A mobile double-pulse laser-induced breakdown spectroscopy system for industrial environments is presented. Its capabilities as a process analytical technique for the recovery of metals from molten inorganic wastes are investigated. Using low-melting glass doped with different amounts of additives as a model system for recycling slags, the optimum number of shots, laser inter-pulse and acquisition delay times are optimized for solid and liquid (1200 °C) glass. Limits of detection from 7 ppm (Mn) to 194 ppm (Zn) are achieved working at a distance of 75 cm from the sample. To simplify the quantification of molten samples in an industrial furnace, the possibility is examined of using solid standards for analysis of molten material.  相似文献   

17.
The spectral and temporal polarization dependencies of nanosecond laser-induced plasmas are explored for analysis of gaseous and solid samples using various experimental configurations. Plasma emission measurements were resolved into vertical and horizontal polarization components, and the ratio of the two polarization-resolved measurements was calculated for each sample and configuration. For the solid target, measurements were recorded with the sample oriented both normal to the incident laser beam as well as at oblique angles of incidence. The results for the breakdown of a pure, nitrogen gaseous sample revealed no degree of polarization in either the continuum or atomic emission, with the ratios of the horizontally-to-vertically resolved plasma emission showing values equal to unity when resolved both temporally and spectrally. The analysis of both copper and steel solid samples also showed no polarization dependency in the spectral and temporal data when the laser was incidentally normal to the sample surface. For oblique angles of incidence, some polarization (< 10%) was observed within the first tens of nanoseconds of plasma lifetime. The polarization was manifested as a slight reduction in the horizontal component of plasma emission, but significantly, the observed polarization was found to be spectrally flat, with no difference observed between continuum and atomic emission features. The small polarization effect was found to diminish with plasma residence time, effectively vanishing by about 1 μs following breakdown. The transient polarization is hypothesized to arise from reflection effects (i.e. Fresnel reflectivity) between the plasma light and the solid target surface present with oblique angles of incidence for reflected light, with temporal effects due to the dynamic nature of the plasma development and plasma–surface interactions. Overall, no evidence was found to support any inherent anisotropy or polarization specific to the plasma continuum or the atomic emission for the transitions studied.  相似文献   

18.
Laser-induced breakdown spectroscopy (LIBS) is an on-line, real-time technology that can produce immediate information about the elemental contents of tissue samples. We have previously shown that LIBS may be used to distinguish cancerous from non-cancerous tissue. In this work, we study LIBS spectra produced from chicken brain, lung, spleen, liver, kidney and skeletal muscle. Different data processing techniques were used to study if the information contained in these LIBS spectra is able to differentiate between different types of tissue samples and then identify unknown tissues. We have demonstrated a clear distinguishing between each of the known tissue types with only 21 selected analyte lines from each observed LIBS spectrum. We found that in order to produce an analytical model to work well with new sample we need to have representative training data to cover a wide range of spectral variation due to experimental or environmental changes.  相似文献   

19.
The composition of the line and band spectra of the plasma induced by a femtosecond laser pulse on the surface of sea water is determined. The temporal behaviors of the intensity of the continuum and the Ca II, Mg II and Na I lines are investigated. It is shown that the time dependence of the intensity of the Na I line is described by a monoexponential function. The characteristic decay times of the line intensities of Mg II and Na I were used to estimate the three-body recombination times. Using these values, we estimate the electron number density and the feasibility of Local Thermodynamic Equilibrium (LTE) criterion. A method involving excitation rate constants is proposed for the comparison of detection limits. For a plasma generated on a liquid surface, the following relation among detection limits will be obtained: LOD(Na) < LOD(K) < LOD(Ca) < LOD(Al) < LOD(Mg) < LOD(Zn).  相似文献   

20.
We present a new method for improving the reliability of quantitative analysis by laser-induced breakdown spectroscopy (LIBS). The method can be considered as a variation of the calibration-free LIBS approach; although not completely standard-less, only one standard of known composition and similar matrix to the one to be analyzed is needed. On the other hand, the one-point calibration approach allows the empirical determination of essential experimental and spectroscopic parameters, whose knowledge is often imprecise or lacking; the result is a definite improvement of the trueness of LIBS analysis with respect to the traditional calibration-free approach.The characteristics and advantages of the proposed one-point calibration LIBS approach will be demonstrated on a set of copper-based samples of known composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号