首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Wang Z  Qiu D  Ni Z  Tao G  Yang P 《Analytica chimica acta》2006,577(2):288-294
A novel method for the determination of Al, Ca, Cr, Cu, Fe, Mg, Mn, Ni and Ti in high purity silicon carbide (SiC) using slurry introduction axial viewed inductively coupled plasma optical emission spectrometry (ICP-OES) was described. The various sizes of SiC slurry were dispersed by adding dispersant polyethylene imine (PEI). The stability of slurry was characterized by zeta potential measurement, SEM observation and signal stability testing. The optimal concentration of PEI was found to be 0.5 wt% for the SiC slurry. Analytical results of sub-μm size SiC by the slurry introduction were in good accordance with those by the alkaline fusion method which verified that determination could be calibrated by aqueous standards. For μm size SiC, results of most elements have a negative deviation and should be calibrated by the Certified Reference Material slurry. Owing to a rather low contamination in the sample preparation and stability of the slurry, the limits of detection (LODs), which are in the range of 40-2000 ng g−1, superior to those of the conventional nebulization technique by ICP-OES or ICP-MS.  相似文献   

2.
以碳化硼为例,研究了悬浮液雾化进样中的粒子在传输和蒸发过程中的行为,并对分析结果出现负偏离的原因进行了详细探讨.对比悬浮液颗粒的原始粒径分布和经过传输过程后的粒径分布,获得到达等离子体的颗粒粒径上限小于10 Am.样品中存在的部分超大粒径的颗粒(d>>10 μm)会严重影响可传输区域颗粒(d<10 μm)的质量运输效率...  相似文献   

3.
This paper proposes a quick, novel method for tin determination in organotin chemicals by slurry nebulization inductively coupled plasma atomic emission (ICP-AES) spectrometry. The method was tested by the measurement of five organotin carboxylate complexes of known composition for obtaining simple stoichiometric data. The slurries were prepared by first dissolving the organotins in an adequate solvent (methanol, pyridine or acetone) well miscible with water and then adding this solution drop-by-drop to a 0.005% TX-100 tenzide solution while maintaining intensive mixing. Dynamic laser light scattering experiments showed that the average equivalent particle size in the resulting slurry was ≈0.3 μm for all samples and solvents. Under suitable ICP-AES measuring conditions, the signal recoveries were found to be between 101.8 and 106.6%, which allowed direct nebulization and calibration against aqueous solutions. Typically, 70 μg l−1 detection limit and 1–5% relative S.D. on five replicates can be achieved by the described method.  相似文献   

4.
原子光谱分析中的浆液雾化进样   总被引:3,自引:0,他引:3  
提出了ICP-AES/MS方法中浆液雾化进样问题。叙述了均匀与稳定的浆样制备方法,包括使用添加剂和pH调节。讨论了颗粒大小分布、zeta电位测定等浆样稳定性的表征方法。评述了校准曲线法、标准加入法和本征内标法等校准方法。  相似文献   

5.
The optimization and use of ICP-AES with slurry nebulization for the direct analysis of ZrO2-powder is described. The powder samples are dispersed in water, acidified to pH 2 and the slurry is fed into a Babington nebulizer. The effects of grain size, pH of the suspending medium and standing time on the stability of the slurry are discussed. For the optimization of the ICP operating conditions, a simplex technique is applied and for this purpose three types of objective functions were examined. Identical behaviour of slurries and solutions with the same matrix concentrations in the ICP-AES is achieved for powders with particle sizes lower than 10 m; in the latter case calibration can be performed by standard addition with aqueous solutions. The detection limits for Al, B, Ca, Cu, Fe, Mg, Mn, Na, Ti, V. Y are 0.03 g/g to 10 g/g and the standard deviation is generally lower than 10%. Six commercially available ZrO2 powders are analyzed by slurry nebulization ICP-AES and the results were found to agree well with those obtained by ICP-AES after chemical decomposition of the samples.On leave from Department of Analytical Chemistry, Technical University, PL-00-664 Warsaw, Poland  相似文献   

6.
A procedure for the determination of trace elements in human hair has been proposed by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP-OES) with slurry sampling. Slurry was prepared by immersing human hair with conc. HNO3 and then adding a polytetrafluoroethylene (PTFE) slurry, which was used as a chemical modifier for the improvement of vaporization characteristic of analyte. The slurry was homogenized with an ultrasonic vibrator before the measurement. The vaporization behaviour of the analytes in slurry and solution and the main influence factors for the determination were studied with the addition of PTFE systematically. Detection limits for this method varied from 0.033?µg?g?1 (Cu) to 3.21?µg?g?1 (Zn) with the relative standard deviations (RSDs) of 2.8–7.1%. The proposed method was successfully applied for the determination of trace elements (Cu, Mn, Cr, Fe, Zn, Cd and Pb) in human hair with minimum chemical pretreatment and aqueous calibration. The accuracy was checked by comparing the results of this method with those using pneumatic nebulization (PN) ICP-OES after a conventional acid decomposition of the same sample. In addition, the standard reference material of human hair (GBW 07601) was analysed with good agreement between the results from the proposed method and the certified values.  相似文献   

7.
Fly ash samples of cement works were analysed using slurry nebulization inductively coupled plasma atomic emission spectrometric (ICP-AES). Because of the influence of the experimental factors on the signal intensity, the optimal conditions of the analysis circumstances were determined. Control analyses (wet digestion followed by ICP-AES, and XRF of dry powders (pressed pellets)) were also carried out to compare the results. Based on the result, it was concluded that the slurry nebulization method using slurry standard of same type reference material for calibration can be applied for rapid but less precise (RSD 5–10%) determination of the elements in fly ash.  相似文献   

8.
A rapid method of determining zinc and iron in food by flame atomic-absorption spectrophotometry with slurry nebulization into an air-acetylene flame has been developed. A V-groove, clog-free Babington-type nebulizer, coupled to a single-line flow-injection analysis (FIA) system, was employed to introduce the slurry into the spray chamber. Under the FIA conditions described, an injection frequency of 120/hr is possible, with negligible carry-over and memory effects. The calibration graphs were obtained by using various concentrations (up to 0.1 g/ml) of white bean homogenate as standards, rather than solutions. The method has been applied to various kinds of foods, including grains, vegetables, fruits and sausage. Homogenization of semi-prepared samples to form slurries took only 4 min. Relative deviations between results by the slurry and solution methods for both elements averaged 2-3%. Detection limits by the slurry method were 0.3 mug/ml Zn and 0.6 mug/ml Fe.  相似文献   

9.
This paper is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta, Part B (SAB). This hardcopy text, comprising the main body and an appendix, is accompanied by a disk with programs, data files and a brief manual. The main body discusses purpose, design principle and usage of the computer software for modelling the evaporation behaviour of particles in inductively coupled plasma atomic emission spectrometry (ICP-AES). Computer software has been developed in FORTRAN 77 language in order to simulate the evaporation behaviour of particles of refractory materials such as encountered in the analysis of advanced ceramic powders by slurry nebulization inductively coupled argon plasma atomic spectrometry. The program simulates the evaporation of single particles in the inductively coupled plasma and also enable it to calculate on the base of a given particle size distribution the evaporation behaviour of all the particles contained in a sample. In a so-called “intensity concept”, the intensity is calculated as a function of the observation height in order to determine recovery rates for slurries compared with aqueous solutions. This yields a quick insight whether a calibration with aqueous solutions can be used for analysis of slurries of a given powder by slurry nebulization ICP-AES and also is a help in determining the optimal parameters for analyses of powders by means of slurry nebulization ICP-AES.Applications for the evaporation of Al2O3 and SiC powders document the usefulness of the model for the case of a 1.5 kW argon ICP of which the temperature at 8 mm above the load coil has been determined to be 6100 K. The model predicts the maximum particle size for SiC and Al2O3 that can be transported (10–15 μm) and evaporated for a given efficiency under given experimental conditions. For both Al2O3 and SiC, two ceramic powders of different grain size were investigated. The median particle sizes cover the range typical of ceramic powders. Investigations were made for SiC A 10 (median particle size 2.2 μm), SiC F1200 (4.3 μm) and Al2O3 AKP 30 (< 1.9 μm) and Al2O3 Cilas 715 (3.0 μm), respectively, in which particles with diameters of up to 23 μm still are found.  相似文献   

10.
A comparison of slurry sampling (SS)-ETV-ICP-MS and slurry nebulization (SN)-ICP-MS for direct determination of trace impurities in titanium dioxide powder is made. The particle size effect, matrix effect and analytical characteristics of SSETV-ICP-MS and SN-ICP-MS are compared. The results have shown that SSETV-ICP-MS has a lower particle size effect and matrix effect compared to SN-ICP-MS. The analytical performance of the two methods reveals that SSETV-ICP-MS and SN-ICP-MS have similar relative detection limits (in the nanogram per liter level); however, the former has a lower absolute detection limit than the latter. Although the precision for SSETV-ICP-MS is a little worse than that for SN-ICP-MS, it is still acceptable for real sample analysis. The two methods were successfully applied for the determination of trace impurities in titanium dioxide powder samples with particle sizes of less than 50 nm, but only SSETV-ICP-MS could be applied for the determination of trace impurities in titanium dioxide powder samples with a particle size of 1 microm.  相似文献   

11.
等离子体原子光谱分析中溶液样品雾化进样方法的新进展   总被引:1,自引:0,他引:1  
对近年来等离子体原子光谱分析中溶液样品引入方法的新进展作了综述,其中包括气动雾化法、超声雾化法、热雾化法、悬浆雾化法、高水压雾化法及电喷雾法等。文中还根据本课题组多年来的研究经验对每种方法的优缺点及其应用作了简要的介绍和评论。  相似文献   

12.
An on-line lead preconcentration and determination system implemented with inductively coupled plasma-atomic emission spectrometry (ICP-AES) with ultrasonic nebulization (USN) in association with flow injection was studied. For the preconcentration of lead, a Pb-quinolin-8-ol complex was formed on-line at pH 6.8 and retained on Amberlite XAD-16 resin. The lead was removed from the microcolumn by countercurrent elution with nitric acid. A total enhancement factor of 225 was obtained with respect to ICP-AES with pneumatic nebulization (15.0 for USN and 15.0 for the column). The detection limit for Pb for the preconcentration of a 10 mL wine sample was 0.15 microg/L. The precision for 10 replicate determinations at a Pb level of 25 microg/L was a relative standard deviation of 2.5%, calculated from the peak heights obtained. The calibration graph obtained by using the preconcentration system for lead was linear with a correlation coefficient of 0.9995 for levels near the detection limit up to > or = 1000 microg/L. The method was successfully applied to the determination of lead in wine samples.  相似文献   

13.
The scope of a number of plasma spectrochemical methods for the determination of the main components and impurities in ceramic powders is described. These methods meet the requirements for the analytical characterization of new structural and functional ceramics for modern industrial applications and electronic devices. For ceramic powders, spectrochemical analysis with direct methods as well as analysis subsequent to sample dissolution are discussed. Fusion is a powerful method for the dissolution of ZrO2 ceramic powders, provided the fluxes are pure enough. For determinations in Al2O3, SiC and ZrO2, it will be shown that ICP-MS is very useful. This is especially true for trace analysis after matrix removal. The latter can easily be performed on-line in the case of the analysis of Al2O3 powders. For direct analysis of ceramic powders, the direct insertion of samples into the plasma, spark and arc ablation, laser ablation, electrothermal vaporization and slurry nebulization are discussed. Particular attention is given to the direct analysis of ceramics in powder form (Al2O3, SiC, Si3N4, B4, WC) using ICP-OES with slurry nebulization as well as with direct sample insertion (DSI) and with electrothermal vaporization (ETV). For the two latter methods, the use of chemical modifiers for volatile compound formation will be shown to be of great importance, and its features will be explained using thermochemical considerations.  相似文献   

14.
电池浆料中颗粒状活性物质的粒度大小和分散均匀性对电池的内阻、 电压、 局部表面电流和总极化程度等性能有直接影响, 实现对其的在线实时测量对电池的质量控制具有重要意义. 基于电池浆料的高固含量、 高黏度和低透光性的特点, 本文利用超声衰减谱的方式测量了其粒度分布(PSD). 应用于电池浆料的粒度分布测量的最大难点是其利用超声衰减谱法预测粒度分布的模型需要难以获得的分散相和连续相的物性参数. 本文采用主成分分析(PCA)结合误差反向传播(BP)神经网络建立预测模型解决了超声衰减谱法的难点, 并引入遗传算法(GA)优化BP神经网络的初始阈值和权值. 通过以LiCoO2为活性物质的电池浆料进行了验证, 结果表明, PCA-GA-BP神经网络能够有效对不同固含量电池浆料的粒度分布进行预测, 预测值与真实值的峰形重合度高, 峰高偏差小, 两者的均方误差为0.1358, 拟合度(R2)为0.9816, 说明超声衰减谱法可作为测量电池浆料粒度分布的重要方式.  相似文献   

15.
The scope of a number of plasma spectrochemical methods for the determination of the main components and impurities in ceramic powders is described. These methods meet the requirements for the analytical characterization of new structural and functional ceramics for modern industrial applications and electronic devices. For ceramic powders, spectrochemical analysis with direct methods as well as analysis subsequent to sample dissolution are discussed. Fusion is a powerful method for the dissolution of ZrO2 ceramic powders, provided the fluxes are pure enough. For determinations in Al2O3, SiC and ZrO2, it will be shown that ICP-MS is very useful. This is especially true for trace analysis after matrix removal. The latter can easily be performed on-line in the case of the analysis of Al2O3 powders. For direct analysis of ceramic powders, the direct insertion of samples into the plasma, spark and arc ablation, laser ablation, electrothermal vaporization and slurry nebulization are discussed. Particular attention is given to the direct analysis of ceramics in powder form (Al2O3, SiC, Si3N4, B4, WC) using ICP-OES with slurry nebulization as well as with direct sample insertion (DSI) and with electrothermal vaporization (ETV). For the two latter methods, the use of chemical modifiers for volatile compound formation will be shown to be of great importance, and its features will be explained using thermochemical considerations. Received: 18 February 1998 / Revised: 13 May 1998 / Accepted: 9 June 1998  相似文献   

16.
A slurry sampling method for the simultaneous determination of hydride forming (As, Bi, Ge, Sb, Se, Sn) and Hg and non-hydride forming (Ca, Fe, Mg, Mn, Zn) elements, without total sample digestion has been developed using the commercial dual-mode sample introduction system (MSIS) coupled with microwave induced plasma optical emission spectrometry (MIP-OES) from biological and environmental reference materials and real samples. The main advantage of this system is its simultaneous determination of elements that form volatile vapor species and elements that do not, without any instrumental changes. Optimization of reaction, nebulization and instrumental conditions was performed to characterize the new system. Slurry concentration up to 4% m/v (particles < 100 μm) prepared in 10% HNO3 containing 100 μL of decanol, by application of ultrasonic agitation, was used with calibration by the standard addition technique. An ultrasonic probe was used to homogenize the slurry in the quartz cup just before its introduction into the reaction/nebulization system; the multimode sample introduction system (MSIS) combines the benefits of nebulization and vapor generation in a single device. Detection limits (LOD, 3σblank, peak area) of 0.07, 0.29, 0.25, 0.10, 0.12, 0.14, 0.11, 0.28, 0.42, 0.02, 0.21 and 0.34 μg g− 1 were obtained for As, Bi, Ge, Sb, Se, Sn, Hg, Ca, Fe, Mg, Mn and Zn, respectively. The relative standard deviations were ca. 10%, adequate for slurry analysis. To test the accuracy, six certified reference materials were analyzed with the analyte concentrations mostly in the μg g− 1 level. Measured concentrations are in satisfactory agreement with certified values for the biological reference materials (LUTS-1, DOLT-2) and environmental reference materials (PACS-1, GWB 07302, NIST 2710, NBS 1633b), all adequate for slurry sampling. The method was successfully applied to the determination of the elements in real samples (coal fly ash, lake sediment, sewage). The method requires small amounts of reagents and reduces contamination and losses.  相似文献   

17.
The determination of Nb and Ta in Nb–Ta minerals was accomplished by slurry nebulization inductively coupled plasma optical emission spectrometry (ICP-OES), using a clog-free V-groove ceramic nebulizer. Samples were first wet-ground to appropriate particle sizes with narrow size distribution and 90% of the particles in the slurry were smaller than 2.32 μm in diameter. Subsamples were then dispersed in pH 9 aqueous solutions, and agitated in an ultrasonic bath for 15 min prior to analysis. Due to the lack of slurry standards matching well with the samples, calibration was simply carried out using aqueous solution standards. Results were compared with those obtained from a conventional fusion decomposition procedure and acid digestion procedures and a good agreement between the measured and referred values was obtained. The technique provided a good alternative for the rapid determination of Nb and/or Ta in their corresponding minerals.  相似文献   

18.
The contents of Cl, Ca, K, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Rb, Sr, Ba and Pb in raw coal fly ash from five Bulgarian power plants were determined by total reflection X-ray fluorescence (TXRF), using gallium as the internal standard. The samples were analysed as in slurry form in Triton? X-114. The experimental parameters, such as grain size, concentrations of fly ash slurry and excitation time were optimised. For validation of the method, the certified reference material BCR-176R fly ash was used. The precision of the results obtained is characterised by a relative standard deviation of approximately 10%. The resulting data confirm the suitability of TXRF for the simultaneous determination of major, minor and trace elements in coal fly ash samples. Further advantages provided by TXRF are easy sample preparation (no sample dissolution) and the small sample amount required for analysis.  相似文献   

19.
Silva MM  Goreti M  Vale R  Caramão EB 《Talanta》1999,50(5):1035-1043
A procedure for lead, cadmium and copper determination in coal samples based on slurry sampling using an atomic absorption spectrometer equipped with a transversely heated graphite tube atomizer is proposed. The slurries were prepared by weighing the samples directly into autosampler cups (5-30 mg) and adding a 1.5 ml aliquot of a diluent mixture of 5% v/v HNO(3), 0.05% Triton X-100 and 10% ethanol. The slurry was homogenized by manual stirring before measurement. Slurry homogenization using ultrasonic agitation was also investigated for comparison. The effect of particle size and the use of different diluent compositions on the slurry preparation were investigated. The temperature programmes were optimized on the basis of pyrolysis and atomization curves. Absorbance characteristics with and without the addition of a palladium-magnesium modifier were compared. The use of 0.05% m/v Pd and 0.03% m/v Mg was found satisfactory for stabilizing Cd and Pb. The calibration was performed with aqueous standards. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling. Better recoveries of the analytes were obtained when the particle size was reduced to <37 mum. Several certified coal reference materials (BCR Nos. 40, 180, and 181) were analyzed, and good agreement was obtained between the results from the proposed slurry sampling method and the certificate values.  相似文献   

20.
A high-throughput method for viscosity measurement was developed and tested for nanocomposite sols with an easy-to-clean (ETC) effect. The method is based on doping of sols with viscosity sensitive fluorescent dye 4,4′-bis-(2-benzoxazolyl)-stilbene (BOS) and acquisition of fluorescence intensity data. The spectroscopic data were correlated with viscosity data derived from mechanical measurements with a rotational viscometer and show an exponential correlation of both mechanical and spectroscopic measurement methods in the relevant data space of 3–5 mPa·s. For application of the spectroscopic viscosity measurement as a high-throughput assay doping of sols with BOS slurry was carried out with an automated liquid handling system, and spectroscopic measurements were performed with a fluorescence microplate reader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号