首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Celastraceae sesquiterpenoids: biological activity and synthesis   总被引:1,自引:0,他引:1  
Plant extracts of the Celastraceae have been used for centuries throughout South America and China as insect repellents and insecticides in traditional agriculture, and also for the treatment of a plethora of medical ailments from stomach complaints and fever to rheumatoid arthritis and cancer. Many of the medicinally interesting properties associated with these crude preparations have now been attributed to a large family of highly oxygenated sesquiterpenoids based on a tricyclic dihydroagarofuran skeleton. In this article, the structural diversity and range of biological activities associated with this intriguing class of natural products are examined with a view to stimulating interest in their total synthesis. Existing synthetic endeavours towards their synthesis are also evaluated.  相似文献   

2.
杨婵  麦旦提  潘喆敏  薛芸  王彦  阎超 《色谱》2016,34(5):449-455
类二十烷酸是一大类由二十碳多不饱和脂肪酸氧化产生的具有生物活性的不饱和脂肪酸,是重要的炎症因子,广泛存在于体液和组织中,调节体内众多生理和病理过程。类二十烷酸在生物体内种类众多,含量较低,并且存在大量同分异构体,因此生物体内类二十烷酸的分离和分析具有较大的挑战。本文对近5年来类二十烷酸的分析方法和其在生物样品分析中的应用进行归纳总结,重点介绍了不同分析方法的特点及其在生物样品分析中的最新进展,旨在为类二十烷酸的体内药物分析及应用研究提供参考。  相似文献   

3.
The development of surfaces that have switchable properties, also known as smart surfaces, have been actively pursued in the past few years. The recent surge of interest in these switchable systems stems from the widespread number of applications to many areas in science and technology ranging from environmental cleanup to data storage, micro- and nanofluidic devices. Moreover, the ability to modulate biomolecule activity, protein immobilisation, and cell adhesion at the liquid-solid interface is important in a variety of biological and medical applications, including biofouling, chromatography, cell culture, regenerative medicine and tissue engineering. Different materials have been exploited to induce such changes in surface biological properties that are mostly based on self-assembled monolayers or polymer films. This critical review focuses on the recent progress in the preparation of these switchable surfaces, and highlights their applications in biological environments. The review is organized according to the external stimuli used to manipulate the properties of the substrate-chemical/biochemical, thermal, electric and optical stimuli. Current and future challenges in the field of smart biological surfaces are addressed (189 references).  相似文献   

4.
Chitin and chitosan are attractive biopolymers with enormous structural possibilities for chemical modification, creating platforms for new chemical entities with a broad scope of applications, ranging from material science to medicine. During the last few years, incredible efforts have been dedicated to the regioselective modification of these biopolymers paving the way for improved properties and tailored activities. Herein, the most recent advances in chitin/chitosan regioselective modification, reaction conditions, selectivity, and the impact on its applications are highlighted. Moreover, the recent focus on chitooligosaccharides, their regioselective and chemoselective functionalization, as well as their role in biological studies, including molecular recognition with several biological targets are also covered.  相似文献   

5.
Many successful synthesis routes for producing different shapes of metallic nanostructures, including sphere, rod, cube, and hollow shapes, have been developed in the past few decades. Many applications using these nanostructures have been studied because the outstanding properties of the nanostructures are not exhibited by their bulk-state counterparts. This review paper reports some recent developments in clinical and biosensor applications. The first part focused on the synthesis methods of metallic nanostructures having various shapes along with their optical properties. The second and third part is an introduction of the gold nanoparticle assemblies and arrays, explaining the conjugation methods of metallic nanostructures with biological entities. The final part reviews on the recent bioanalytical applications using various shapes of metallic nanostructures.  相似文献   

6.
The sorbicillinoids are a family of hexaketide metabolites that have been isolated from a variety of fungal sources, collected from both marine and terrestrial sources. Since 1948, the family has grown in size to include over 50 members, many of which have complex, highly oxygenated, bicyclic and tricyclic frameworks. In conjunction with their biological activity, the structural complexity of these structures has inspired several synthetic campaigns and has also led to controversy surrounding the biosynthetic pathway responsible for the natural production of these compounds. Through this review, we aim to give a historical perspective to each of these areas and hope to inspire new avenues of research for addressing the knowledge gaps that still exist.  相似文献   

7.
The outstanding mechanical properties of spider silks have motivated many researchers to establish biotechnological production techniques which are necessary to provide sufficient amounts of silk proteins for industrial applications. Based on recent developments in genetic engineering, two strategies for the recombinant production of spider-silk proteins have been established which are discussed in detail. Further, protein-design strategies are described, enabling the combination of silk properties with additional biological, chemical, or technical features. We highlight the potential of engineered and recombinantly-produced spider-silk proteins to provide the basis for a new generation of biomaterials.  相似文献   

8.
《印度化学会志》2021,98(5):100069
Graphene quantum dots (GQDs) are becoming imperative functional carbon-based nanomaterials for use in a wide range of biological applications due to the unique optical and optoelectronic properties and also for having physical and chemical stable carbon network structure. Low toxicity, edge functionalization, tunable size, and photoluminescence properties of GQDs have attracted worldwide interests in recent years from academic and industrial point of view. The strong photoluminescence, good water solubility, and high drug loading capacity make GQDs useful for biosensing, bioimaging, and drug delivery. In this review, we have focused on the recent development in the synthesis methodologies and biological applications of GQDs.  相似文献   

9.
In recent years, more attention has been paid to natural sources of antioxidants. Flavonoids are natural substances synthesized in several parts of plants that exhibit a high antioxidant capacity. They are a large family, presenting several classes based on their basic structure. Flavonoids have the ability to control the accumulation of reactive oxygen species (ROS) via scavenger ROS when they are formed. Therefore, these antioxidant compounds have an important role in plant stress tolerance and a high relevance in human health, mainly due to their anti-inflammatory and antimicrobial properties. In addition, flavonoids have several applications in the food industry as preservatives, pigments, and antioxidants, as well as in other industries such as cosmetics and pharmaceuticals. However, flavonoids application for industrial purposes implies extraction processes with high purity and quality. Several methodologies have been developed aimed at increasing flavonoid extraction yield and being environmentally friendly. This review presents the most abundant natural flavonoids, their structure and chemical characteristics, extraction methods, and biological activity.  相似文献   

10.
《中国化学快报》2021,32(12):3653-3664
Carbon dots (CDs), as a new member of carbon nanostructures, have been widely applied in extensive fields due to their exceptional physicochemical properties. While, the emissions of most reported CDs are located in the blue to green range under the excitation of ultraviolet or blue light, which severely limits their practical applications, especially in photovoltaic and biological fields. Studies that focused on synthesizing CDs with long-wavelength (red to near-infrared) emission/excitation features (simply named L-w CDs) and exploring their potential applications have been frequently reported in recent years. In this review, we analyzed the key influence factors for the synthesis of CDs with long wavelength and multicolor (containing long wavelength) emissive properties, discussed possible fluorescence mechanism, and summarized their applications in sensing and cancer theranostics. Finally, the existing challenges and potential opportunities of L-w CDs are presented.  相似文献   

11.
Ferrites have been used to separate a wide range of substances such as dissolved metal species, particulate matter, and organic and biological materials; they have been used almost exclusively for metal waste treatment applications. However, ferrites can be used to remove and concentrate selected trace metals in a wide variety of feed solutions requiring analysis. A brief overview of ferrite properties and recent applications for trace metal recovery and concentration will be presented.  相似文献   

12.
碳纳米管在生物化学传感及生物传输方面的应用   总被引:2,自引:0,他引:2  
碳纳米管作为一种新型一维纳米材料具有独特的结构和性质,在生物传感、生物标记及生物传榆等研究中显示了巨大的潜力.碳纳米管在化学、生物及医药方面的研究应用具有重要的理论意义及实际意义.重点综述了碳纳米管在生物化学传感和生物传榆中的研究应用进展,并展望了其发展趋势和应用前景.  相似文献   

13.
Atomically precise gold nanoclusters (AuNCs) are an emerging class of quantum-sized nanomaterials. Intrinsic discrete electronic energy levels have endowed them with fascinating electronic and optical properties. They have been widely applied in the fields of optoelectronics, photovoltaics, catalysis, biochemical sensing, bio-imaging, and therapeutics. Nevertheless, most AuNCs are synthesized in organic solvents and do not disperse in aqueous solutions; this restricts their biological applications. In this review, we focus on the recent progress in the preparation of water-dispersible AuNCs and their biological applications. We first review different methods of synthesis, including direct synthesis from hydrophilic templates and indirect phase transfer of hydrophobic AuNCs. We then discuss their photophysical properties, such as emission enhancement and fluorescence lifetimes. Next, we summarize their latest applications in the fields of biosensing, biolabeling, and bioimaging. Finally, we outline the challenges and potential for the future development of these AuNCs.  相似文献   

14.
朱琳  傅青云 《广州化学》2014,39(4):65-72
综述了新型金属纳米材料Au25纳米团簇的合成机理和合成工艺改进,结合Au纳米团簇荧光作用机理说明其特有的荧光特性,利用Au纳米团簇荧光性质在离子检测、生物小分子检测、蛋白质检测和生物成像方面的应用,为Au纳米团簇的研究提供参考。  相似文献   

15.
Spirocyclic compounds isolated from plant and animal origins have important applications in medicinal chemistry. Spiro compounds having cyclic structures fused at a central carbon are of recent interest because of their interesting conformational features and their structural implications for biological systems. Spiro heterocycles like spiropyrrolidines and oxindole moieties have been found to play fundamental roles in biological processes and have exhibited diversified biological activity and pharmacological and therapeutical properties. In view of these facts we decided to present a representative synthetic scheme and various biological activities of the heterocycles like spiropyrrolidines and oxindole moieties derivatives, especially in relation to microbial infections like cancer and tubercular, viral, HIV, bacterial, and fungal infections.  相似文献   

16.
Phosphorene, generally defined as two-dimensional (2D) black phosphorus (BP) with monolayered or few-layered structure, has emerged as a promising member of the family of 2D materials. Since its discovery in 2014, extensive research has been focused on broadening its applications, covering the biological, photoelectric, and electrochemical fields, owing to the unique physicochemical and structural properties. As a single-elemental material, phosphorene has demonstrated its applicability for the preparation of efficient electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR), and other electrocatalytic applications. In this Minireview, a summary of the very recent research progresses of phosphorene in electrocatalysis is offered, with a special focus on the effective synthetic strategies towards performance improvement. In the concluding section, challenges and perspectives are also discussed.  相似文献   

17.
Alkaloids produced by endophytic fungi: a review   总被引:1,自引:0,他引:1  
In recent years, a number of alkaloids have been discovered from endophytic fungi in plants, which exhibited excellent biological properties such as antimicrobial, insecticidal, cytotoxic, and anticancer activities. This review mainly deals with the research progress on endophytic fungi for producing bioactive alkaloids such as quinoline and isoquinoline, amines and amides, indole derivatives, pyridines, and quinazolines. The biological activities and action mechanisms of these alkaloids from endophytic fungi are also introduced. Furthermore, the relationships between alkaloid-producing endophytes and their host plants, as well as their potential applications in the future are discussed.  相似文献   

18.
Xanthones are significant bioactive compounds and secondary metabolites in mangosteen pericarps. A xanthone is a phenolic compound and versatile scaffold that consists of a tricyclic xanthene-9-one structure. A xanthone may exist in glycosides, aglycones, monomers or polymers. It is well known that xanthones possess a multitude of beneficial properties, including antioxidant activity, anti-inflammatory activity, and antimicrobial properties. Additionally, xanthones can be used as raw material and/or an ingredient in many food, pharmaceutical, and cosmetic applications. Although xanthones can be used in various therapeutic and functional applications, their properties and stability are determined by their extraction procedures. Extracting high-quality xanthones from mangosteen with effective therapeutic effects could be challenging if the extraction method is insufficient. Although several extraction processes are in use today, their efficiency has not yet been rigorously evaluated. Therefore, selecting an appropriate extraction procedure is imperative to recover substantial yields of xanthones with enhanced functionality from mangosteens. Hence, the present review will assist in establishing a precise scenario for finding the most appropriate extraction method for xanthones from mangosteen pericarp by critically analyzing various conventional and unconventional extraction methods and their ability to preserve the stability and biological effects of xanthones.  相似文献   

19.
量子点标记的生物实时动态示踪成像研究进展   总被引:3,自引:0,他引:3  
量子点的荧光特性及其在生物标记和成像应用中的实现, 为生命体系的高灵敏原位、实时及动态成像研究提供了新的发展契机, 已成为当前生物检测和成像的最前沿研究领域之一. 本文综述了量子点光物理性质、量子点标记生物荧光探针制备及其在实时动态示踪成像应用中的研究进展.  相似文献   

20.
Though creation and characterization of water soluble luminescent silver nanodots were achieved only in the past decade, a large variety of emitters in diverse scaffolds have been reported. Photophysical properties approach those of semiconductor quantum dots, but relatively small sizes are retained. Because of these properties, silver nanodots are finding ever-expanding roles as probes and biolabels. In this critical review we revisit the studies on silver nanodots in inert environments and in aqueous solutions. The recent advances detailing their chemical and physical properties of silver nanodots are highlighted with an effort to decipher the relations between their chemical/photophysical properties and their structures. The primary results about their biological applications are discussed here as well, especially relating to their chemical and photophysical behaviours in biological environments (216 references).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号