首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper proposes an on-line pre-concentration system for cadmium determination in drinking water using flame atomic absorption spectrometry (FAAS). Cadmium(II) ions are retained as 1-(2-pyridylazo)-2-naphthol (PAN) complex at the walls of a knotted reactor, followed of elution using hydrochloric acid solution. The optimization was performed in two steps using factorial design for preliminary evaluation and a Box–Behnken design for determination of the critical experimental conditions. The variables involved were: sampling flow-rate, reagent concentration, pH and buffer concentration, and as response the analytical signal (absorbance). The validation process was performed considering the parameters: linearity and other characteristics of the calibration curve, analytical features of on-line pre-concentration system, precision, effect of other ions in the pre-concentration system and accuracy. Using the optimized experimental conditions, the procedure allows cadmium determination with a detection limit (3 σ / S) of 0.10 μg L 1, a quantification limit (10 σ / S) of 0.33 μg L−1, and a precision, calculated as relative standard deviation (RSD) of 2.7% (n = 7) and 2.4% (n = 7) for cadmium concentrations of 5 and 25 μg L 1, respectively. A pre-concentration factor of 18 and a sampling frequency of 48 h−1 were obtained. The recovery for cadmium in the presence of several ions demonstrated that this procedure could be applied for the analysis of water samples. The method was applied for cadmium determination in drinking water samples collected in Salvador City, Brazil. The cadmium concentrations found in five samples were lower than the maximum permissible levels established by the World Health Organization.  相似文献   

2.
Application of counter-current chromatography (CCC) for oil analysis has been suggested for the first time. CCC looks very promising as a tool for pre-concentration and isolation of trace elements from oil. Features of stationary phase retention of two-phase liquid systems (oil or oil products–aqueous nitric acid solutions) in CCC have been investigated. The influence of physicochemical properties of crude oil and oil products used as a mobile phase on the volume of stationary phase (acidic aqueous solutions) retained in CCC was studied. Chromatographic behavior of several oil samples was studied. It has been shown that physicochemical properties of test oil influence its chromatographic behavior. Optimal values of density and viscosity (ρ < 0.85 g/cm3, n < 7 cSt) of crude oil and oil products that could be analyzed using CCC were estimated. The influence of the column rotational speed and flow rate of mobile phase on the stationary phase retention was also investigated. It is known that kinetic aspects (mass transfer of elements between phases) can play a very important role in selecting an optimal composition of stationary phase for the pre-concentration of elements from oil. The influence of nitric acid concentration in the stationary phase on mass transfer was studied. Kinetic characteristic for trace element recovery has been investigated for the optimization of pre-concentration conditions of trace elements from crude oil and oil products. The extraction recoveries of Zn, Mn, Fe, Ni, V, Cu, Cd, Pb and Ba by CCC in dynamic mode are in the range of 75–95% while they are lower than 35% under batch conditions.  相似文献   

3.
《Microchemical Journal》2011,97(2):277-282
UV photochemical vapor generation (photo-CVG) as sample introduction was first adapted for determination of ultratrace cobalt by atomic fluorescence spectrometry (AFS). Cobalt volatile species can be generated when the buffer system of formic acid and formate containing Co (II) is exposed to UV radiation. The generated gaseous products were separated from liquid phase within a gas–liquid separator and then transported to AFS for determination of cobalt. Factors affecting the efficiency of photo-CVG were investigated in detail, including type and concentration of low molecular weight (LMW) organic acid, buffer system, UV irradiation time, reaction temperature, carrier gas flow rate and hydrogen flow rate. With 4% (v/v) HCOOH and 0.4 mol L 1 HCOONa buffer solution, 150 s irradiation time and 15 W low pressure mercury lamp, a generation efficiency of 23–25% was achieved. A limit of detection (LOD) of 0.08 ng mL 1 without any pre-concentration procedure and a precision of 2.2% (RSD, n = 11) at 20 ng mL 1 were obtained under the optimized conditions. The proposed method was successfully applied in the analysis of several simple matrix real water samples.  相似文献   

4.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

5.
A new simple method for the spectrophotometric determination of Pb(II) in fly ash leachates was developed. These leachates tend to contain a large amount of Ca(II) and Zn(II); this interferes with spectrophotometric determination of Pb(II) when conventional colorimetric agents are used. A copolymer consisting of protoporphyrin IX disodium salt and acrylamide was synthesized as a colorimetric agent. A measuring reagent containing ethylenediamine-N,N′-dipropionic acid (EDDP) as a masking agent for Zn(II) and an appropriate amount of Ca(II) together with the copolymer was applied to determine Pb(II). The temporal change in the absorption spectrum of the measuring reagent was acquired with a newly developed portable spectrophotometer for this method. The composition of EDDP and Ca(II) in the measuring reagent was optimized to measure leachates contaminated with Ca(II) and Zn(II). The detection limit and relative standard deviation of Pb(II) measured using the optimized method were 0.05 mg L?1 and 2.3%, respectively. The tolerance limits for Ca(II) and Zn(II) contaminants, where errors of less than 10% were allowed at a concentration of 0.5 mg L?1 Pb(II), were 4000 and 4 mg L?1, respectively. The determination of Pb(II) in various samples of actual leachates from incinerator fly ash was examined with this method. The obtained values correlated well with those obtained by flame atomic absorption spectroscopy.  相似文献   

6.
Bromine and iodine determination was performed in carbon nanotubes (CNTs) by inductively coupled plasma mass spectrometry (ICP-MS) after sample preparation using pyrohydrolysis. Samples of CNTs (up to 500 mg) were mixed with 750 mg of V2O5 and heated at 950 °C during 12.5 min in a quartz tube under water vapor and air. The main operational conditions of pyrohydrolysis (carrier gas, absorbing solution, heating time, sample mass and use of V2O5) were evaluated. Accuracy was evaluated using certified reference materials (CRM) with similar matrix and also by comparison of results obtained after digestion of samples by microwave-induced combustion (MIC) and determination by ICP-MS. Agreement with CRM values was higher than 97% for Br and better than 96% in comparison with reference values (MIC/ICP-MS) of Br and I in CNTs samples. The limit of detection of the method for Br and I determination by ICP-MS was 0.05 and 0.004 μg g? 1, respectively. Using a relatively simple and low cost pyrohydrolysis apparatus up to four samples can be processed per hour. The pyrohydrolysis sample preparation procedure is easy to be performed and provide a clean solution for analysis by ICP-MS, which is very attractive for Br and I control in CNTs.  相似文献   

7.
A simple and fast method based on graphite furnace atomic absorption spectrometry (GF AAS) and slurry sampling technique (SlS) was developed to determine trace Cd, Co and Pb in high-sulphur coal (Sulcis, Italy) and coal chars derived at 600, 750 and 950 °C under N2 atmosphere for developing a clean coal for electricity production. The proposed method was then coupled to a four-step sequential chemical extraction method for assessment of metals distribution in coaled samples. The slurries were prepared by varying sample mass (1–50 mg), volume (1–3 mL) and kind of dispersing medium (1% v/v Triton X-100 and 2 N HNO3), and sonication time (5–30 min). Pyrolysis/atomization temperatures as well carrier gas flow rate were optimised. Pd(NO3)2 and NH4H2PO4 were employed to stabilize Cd and Pb, respectively, in the pyrolysis stage of furnace program. The use of HNO3 as dispersing agent was found to be effective in lowering the high level of background absorption on the Cd analytical signal produced by raw coal matrix. Conversely, coal charred samples did not show significantly level of background interferences, so that Triton X-100 dispersing agent could be used for all analytes. Calibration curve against acid-matched standards was allowed for Cd, whereas the standard addition calibration was used for Co and Pb owing to chemical matrix interferences. The precision, expressed as relative standard deviation (% RSD, n = 5), was better than 5% for Cd, Co, and Pb at 1, 10, and 15 μg L? 1 levels, respectively. The accuracy of the analytical method was checked by analyzing a BCR No. 182 steam coal certificated reference material and the results were in good agreement with certificated and informed values. The solid detection limits (3σblank) were as low as 0.001 Cd, 0.01 Co, and 0.01 Pb mg kg? 1, using 30 mg sample mass and slurry concentration of 30 m v? 1 for Cd, and 50 mg sample mass and 50 m v? 1 slurry concentration for Co and Pb. The content of elements in Sulcis coal was found to be 0.33 Cd, 4.0 Co, and 3.8 Pb mg kg? 1 and mostly associated to sulphates and di-sulphides as indicated by the leaching test. Under pyrolysis conditions Cd significantly volatilised (about 64%) at temperature higher than 600 °C, whereas residue chars at 950 °C are enriched in Co and Pb up to 20%. The proposed method is suitable for routine metals monitoring in coaled samples.  相似文献   

8.
Zirconium(IV) phosphosulphosalicylate, a cation exchanger was synthesized by mixing zirconium oxychloride to a mixture of 5-sulphosalicylic acid and phosphoric acid. The material showed good efficiency for the preparation of an ion-selective membrane electrode. The membrane was characterized affinity for Pb(II) ions. Due to its Pb(II) selective nature, the ion-exchanger was used as an electroactive by XRD and SEM analysis. The electrode responds to Pb(II) ions in a linear range from 1 × 10−5 to 1 × 10−1 M with a slope of 43.8 mV per decade change in concentration with detection limit of 4.78 × 10−6 M. The life span of electrode was found to be 90 days. The proposed electrode showed satisfactory performance over a pH range of 4.0–6.5, with a fast response time of 15 s. The sensor has been applied to the determination of Pb(II) ions in water samples of different origins. It has also been used as indicator electrode in potentiometric titration of Pb(II) ion with EDTA.  相似文献   

9.
The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH4 reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO3 at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K2Cr2O7/H2SO4 trap solution in order to avoid poisoning of the Au–Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au–Pt trap, followed by thermal release of Hg0 and atomic absorption measurement. Purified N2 was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 μg L−1 of Hg2+, respectively. The limit of detection was 0.10 μg L−1 (0.14 μg kg−1) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 μg L−1.  相似文献   

10.
This paper presents the optimization of instrumental and solution parameters for determination of tamoxifen in urine and plasma and formulation by fast Fourier transform square wave voltammetry (SWV) using a gold microelectrode in flow-injection system. The samples are subjected by the same buffer solution and are injected in the flow-injection apparatus. By applying a novel square wave voltammetry method to perform as a sensitive method the voltamograms are recorded. The method used for determination of tamoxifen by measuring the changes in admittance voltammogram of a gold ultramicroelectrode (in 0.05 mol L?1 H3PO4 solution) caused by adsorption of the tamoxifen on the electrode surface. The best sensitivity was achieved using a frequency of 600 Hz and a medium composed of 0.05 mol L?1 phosphate buffers at pH 2.0. The best performance was obtained with the pH value of 2, pulse amplitude 25 mV, frequency 600 Hz, accumulation potential of ?100 mV and accumulation time of 0.5 s. Furthermore, signal-to-noise ratio has significantly increased by application of discrete fast Fourier transform (FFT) method, background subtraction and two-dimensional integration of the electrode response over a selected potential range and time window. Calibration plots are given for solutions containing 1.0 × 10?11 to 3.0 × 10?6 mol L?1 of tamoxifen. The detection limit is calculated to be 3.0 × 10?12 mol L?1 (~2 pg mL?1). The relative standard deviation at concentration 2.0 × 10?8 M is 6.1% for five reported measurements.  相似文献   

11.
A Re coil-filament in-torch vaporization (ITV) sample introduction system was interfaced to a sector field inductively coupled plasma-mass spectrometry (SFICP-MS) system. In this first report on an un-optimized ITV-SF-ICP-MS system, detection limits were established using 5 μL volumes of 100 pg mL 1 standard solutions, translating to 0.5 pg absolute. Such absolute amounts of a dried solution are near or below the detection limit of many ICP-based techniques. The absolute detection limits for Cd, Eu, Pb, Ti, U and Zn were in the 0.2–2 fg range (or, in the 10's of millions to millions of atoms for Pb, Cd, Zn and Ti, about one million atoms for U and about 800 thousand for Eu). These absolute detection limits along with the ability of ITV to handle minute amounts of discrete samples (thus eliminating memory effects from nanoparticles adhering to the walls of pneumatic nebulization sample introduction systems and from clogging of the mass spectrometer orifice), use of sonicated water-based slurries (that eliminated contamination from acid digestion reagents or from slurry stabilization reagents), and elimination of oxygen containing molecular ion interferences due to use of dry samples enabled concentration determinations of Ti (and consequently of TiO2) in pg mL 1 concentrations of slurries of manufactured, 20 nm diameter TiO2 nanoparticles.  相似文献   

12.
In this study, dispersive liquid–liquid microextraction (DLLME) combined with ultra-high-pressure liquid chromatography (UHPLC)–tunable ultraviolet detection (TUV), has been developed for pre-concentration and determination of triclosan (TCS), triclocarban (TCC) and methyl-triclosan (M-TCS) in aqueous samples. The key factors, including the kind and volume of extraction solvent and dispersive solvent, extraction time, salt effect and pH, which probably affect the extraction efficiencies were examined and optimized. Under the optimum conditions, linearity of the method was observed in the range of 0.0500–100 μg L?1 for TCS, 0.0250–50.0 μg L?1 for TCC, and 0.500–100 μg L?1 for M-TCS, respectively, with correlation coefficients (r2) > 0.9945. The limits of detection (LODs) ranged from 45.1 to 236 ng L?1. TCS in domestic waters was detected with the concentration of 2.08 μg L?1. The spiked recoveries of three target compounds in river water, irrigating water, reclaimed water and domestic water samples were achieved in the range of 96.4–121%, 64.3–84.9%, 77.2–115% and 75.5–106%, respectively. As a result, this method can be successfully applied for the rapid and convenient determination of TCS, TCC and M-TCS in real water samples.  相似文献   

13.
In this work, the potential of modified multiwalled carbon nanotubes for separation and preconcentration of trace amounts of manganese ion is studied. Multiwalled carbon nanotubes were oxidized with concentrated HNO3 and then modified with loading 1-(2-pyridylazo)-2-naphtol. Mn(II) ions could be quantitatively retained by modified multiwalled carbon nanotubes in the pH range of 8–9.5. Elution of the adsorbed manganese was carried out with 5.0 mL of 0.1 mol L?1 HNO3. Detection limit is 0.058 ng mL?1 and analytical curve is linear in the range of 0.1 ng mL?1–5.0 μg mL?1 in the initial solution with a correlation coefficient 0.9977 and the preconcentration factor is 100. Relative standard deviation for eight replicate determination of 0.5 μg mL?1 of manganese in the final solution is 0.41%. The effects of the experimental parameters, including the sample pH, flow rates of sample and eluent solution, eluent type, breakthrough volume and interference ions, were studied for preconcentration of Mn(II) ions in detail to optimize the conditions. The method was successfully applied for separation, preconcentration and determination of manganese in different samples.  相似文献   

14.
In the present work, a novel solid polymer electrolyte hydride generation (SPE-HG) cell was developed. The home-made SPE-HG cell, mainly composed of three components (Nafion®117 membrane for separating and H+ exchanging, a soft graphite felt cathode and a Ti mesh modified by Ir anode), was employed for detecting As by coupling to atomic fluorescence spectrometry (AFS). The H+ generated by electrolysis of pure water in anode chamber transferred to cathode chamber through SPE, and immediately reacted with As3 + to generate AsH3. The relative mechanisms and operation conditions for hydride generation of As were investigated in detail. The developed cell employed water as an alternative of acid anolyte, with virtues of low-cost, more than 6 months lifetime and environment friendly compared with the conventional cell. Under the optimized conditions, the limit of determination of As3 + for sample blank solution was 0.12 μg L? 1, the RSD was 2.9% for 10 consecutive measurements of 5 μg L? 1 As3 + standard solution. The accuracy of the method was verified by the determination of As in the reference Tea (GBW07605) and the developed method was successfully applied to determine trace amounts of As in tobacco samples with recovery from 97% to 103%.  相似文献   

15.
《Microchemical Journal》2008,88(2):128-131
The present work proposes a direct method based on slurry sampling for the determination of zinc and copper in human hair samples by multi-element sequential flame atomic absorption spectrometry. The slurries were prepared by cryogenic grinding and sonication of the samples. The optimization step was performed using univariate methodology and the factors studied were: nature and concentration of the acid solution, amount sample/slurry volume, sonication time, and particle size. The established experimental conditions are the use of a sample mass of 50 mg, 2 mol L 1 nitric acid solution, sonication time of 20 min and slurry volume of 10 mL. Adopting the optimized conditions, this method allows the determination of zinc and copper with detection limits of 88.3 and 53.3 ng g 1, respectively, and precision expressed as relative standard deviation (RSD) of 1.7% and 1.6% (both, n = 10) for contents of zinc and copper of 100.0 and 33.3 μg g 1, respectively. The accuracy was checked and confirmed by analysis of two certified reference materials of human hair. The procedure was applied for the determination of zinc and copper in two human hair samples. The zinc and copper contents varied from 100.0 to 175.6 and from 3.2 to 32.8 μg g 1, respectively. These samples were also analyzed after complete digestion in a closed system and determination by FAAS. The statistical comparison by t-test (95% confidence level) showed no significant difference between these results.  相似文献   

16.
The determination of chromium (VI) compounds in plants by electrothermal atomic absorption spectrometry (ET AAS) is proposed based on their leaching with 0.1 M Na2CO3. Due to the presence of relatively high amounts of Na2CO3 in the resulting samples, the temperature and time of pyrolysis and atomization stages must be optimized to minimize the influence of the matrix. A limit of detection (LOD) for determination of Cr(VI) in plants by ET AAS was found to be 0.024 μg g−1.The concentration of Cr(VI) and total chromium in plants collected in different geographical areas (South Africa and Russia), grown on soils high in chromium was determined. The concentration of Cr(VI) and total Cr in stems and leaves of plants was in the range of 0.04–0.7 μg g−1 and 0.5–10 μg g−1, respectively. The limited uptake of Cr(III) by plants, in comparison to its concentration in soil, can be explained by the very low solubility of natural Cr(III) compounds.Results for the determination of Cr(VI) were confirmed by the analysis of BCR CRM 545 (Cr(VI) in welding dust) with good agreement between certified (39.5 ± 1.3 μg mg−1) and found (38.8 ± 1.2 μg mg−1) values. The total concentration of Cr in plants has also been determined by ET AAS after dry ashing of samples at 650 °C. Results were confirmed by the analysis of BCR CRM 281 (Trace elements in Rye Grass) with good agreement between the found (2.12 ± 0.16 μg g−1) and certified value (2.14 ± 0.12 μg g−1).  相似文献   

17.
The originality on the high efficiency of murexide modified halloysite nanotubes as a new adsorbent of solid phase extraction has been reported to preconcentrate and separate Pd(II) in solution samples. The new adsorbent was confirmed by Fourier transformed infrared spectra, X-ray diffraction, scanning electron microscope, transmission electron microscope and N2 adsorption–desorption isotherms. Effective preconcentration conditions of analyte were examined using column procedures prior to detection by inductively coupled plasma-optical emission spectrometry (ICP-OES). The effects of pH, the amount of adsorbent, the sample flow rate and volume, the elution condition and the interfering ions were optimized in detail. Under the optimized conditions, Pd(II) could be retained on the column at pH 1.0 and quantitatively eluted by 2.5 mL of 0.01 mol L?1 HCl–3% thiourea solution at a flow rate of 2.0 mL min?1. The analysis time was 5 min. An enrichment factor of 120 was accomplished. Common interfering ions did not interfere in both separation and determination. The maximum adsorption capacity of the adsorbent at optimum conditions was found to be 42.86 mg g?1 for Pd(II).The detection limit (3σ) of the method was 0.29 ng mL?1, and the relative standard deviation (RSD) was 3.1% (n = 11). The method was validated using certified reference material, and has been applied for the determination of trace Pd(II) in actual samples with satisfactory results.  相似文献   

18.
Trace analysis of thallium at surface modified thick-film graphite electrode with Bi nanopowder has been carried out using square-wave anodic stripping voltammetry (SWASV) technique. The Bi nanopowder electrode exhibited a well-defined response relating to the oxidation of Tl. From the linear relationship between Tl concentration and peak current, the sensitivity of the Bi nanopowder electrode was quantitatively estimated. The detection limit of Tl was determined to be 0.03 μg/L for 1.0 μg/L Tl solution under 10 min accumulation, which is lower than the reported values for a Bi film electrode. Furthermore, it is confirmed that EDTA addition effectively eliminates the Pb and Cd interferences in the course of Tl determination by forming complexes with Pb2+ and Cd2+.  相似文献   

19.
A method for preconcentration of palladium at trace level on modified multiwalled carbon nanotubes columns and determination by flame atomic absorption spectrometry (FAAS) has been developed. Multiwalled carbon nanotubes (MWCNTs) were oxidized with concentrated HNO3 and the oxidized multiwalled carbon nanotubes were modified with 5-(4′-dimethylamino benzyliden)-rhodanine, and then were used as a solid sorbent for preconcentration of Pd(II) ions. Factors influencing sorption and desorption of Pd(II) ions were investigated. The sorption of Pd(II) ions was quantitative in the pH range of 1.0–4.5, whereas quantitative desorption occurs with 3.0 mL 0.4 mol L?1 thiourea. The amount of eluted palladium was measured using flame atomic absorption spectrometry. The effects of experimental parameters, including sample flow rate, eluent flow rate, and eluent concentration were investigated. The effect of coexisting ions showed no interference from most ions tested. The proposed method permitted a large enrichment factor (about 200). The relative standard deviation of the method was ±2.73% (for eight replicate determination of 2.0 μg mL?1 of Pd(II)) and the limit of detection was 0.3 ng mL?1. The method was applied to the determination of Pd(II) in water, road dust, and standard samples.  相似文献   

20.
Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min 1 sample loading rate. The detection limit was 0.2 ng L 1 and much lower than that of conventional method (around 15.8 ng L 1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L 1 of Hg and the linear working curve is from 20 to 2000 ng L 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号