首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sample is fused with a mixture of sodium and potassium carbonates. Zirconium is separated from the large amounts of sodium and potassium by precipitation of hydrated oxides before nebulization. The detection limit is 0.32 μg Zr g-1. Results for seven standard rocks are in accord with recommended values.  相似文献   

2.
An inductively coupled plasma-atomic emission spectrometry (ICP-AES) method is developed for determination of Cd, Co, Cr, Cu, Ni, Tl and Zn in traces in calcite, CaCO3, dolomite, CaMg(CO3)2, and gypsum, CaSO4. Interferences of a Ca/Mg matrix on analyte intensities were investigated. The results reveal that Ca does not interfere with Cr, Ni and Zn, but tends to decrease the intensity of the other elements. Magnesium as a matrix element does not interfere on with Zn, but increases the intensities of Ni, Cr and Cu, and decreases the intensities of Cd, Co and Tl. To eliminate these matrix interferences on trace element intensities, a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC)2, is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The flotation of acidic aqueous solutions of calcite, dolomite and gypsum was performed at pH 6.0, using 10 mg l−1 Pb and 0.3 mmol l−1 HMDTC added to 1 l of solution tested. The method detection limits of analytes in different minerals range from 0.02 to 0.06 μg g−1 for Cd, 0.04 to 0.10 μg g−1 for Co, 0.03 to 0.13 μg g−1 for Cr, 0.02 to 0.16 μg g−1 for Cu, 0.09 to 0.30 μg g−1 for Ni, 6.45 to 7.71 μg g−1 for Tl and 0.18 to 0.20 μg g−1 for Zn.  相似文献   

3.
Concentrations of lead in the range 0.15–750 μg−1 were measured in metallic matrices (copper, brass, steel, and zinc) by laser excited atomic fluorescence combined with UV laser ablation in a low-pressure (130 mbar) argon atmosphere. The mass of material ablated was determined by repetitive weighing of the target prior to and after approximately 10 000 ablating shots. The fluorescence was excited after a 100 μs delay relative to the ablation pulse. A long integration time of 200 s was used to provide a representative determination of bulk concentrations. No matrix effect was observed, providing a universal calibration curve for all samples with relative standard deviations of about 20%. The relative and absolute limits of detection were 72 ng g−1 and 0.5 fg, respectively.  相似文献   

4.
A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 °C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l 1. The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g 1 (Eu)–33.3 ng g 1(Nd) with the precisions of 4.1% (Yb)–10% (La) (c = 1 μg l 1, n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory.  相似文献   

5.
In this work, the potential of laser ablation–inductively coupled plasma–mass spectrometry for the fast analysis of polymers has been explored. Different real-life samples (polyethylene shopping bags, an acrylonitrile butadiene styrene material and various plastic bricks) as well as several reference materials (VDA 001 to 004, Cd in polyethylene) have been selected for the study. Two polyethylene reference materials (ERM-EC 680 and 681), for which a reference or indicative value for the most relevant metals is available, have proved their suitability as standards for calibration.Special attention has been paid to the difficulties expected for the determination of Cr at the μg g 1 level in this kind of materials, due to the interference of ArC+ ions on the most abundant isotopes of Cr. The use of ammonia as a reaction gas in a dynamic reaction cell is shown to alleviate this problem, resulting in a limit of detection of 0.15 μg g 1 for this element, while limiting only modestly the possibilities of the technique for simultaneous multi-element analysis. In this regard, As is the analyte most seriously affected by the use of ammonia, and its determination has to be carried out in vented mode, at the expense of measuring time.In all cases studied, accurate results could be obtained for elements ranging in content from the sub-μg g 1 level to tens of thousands of μg g 1. However, the use of an element of known concentration as internal standard may be needed for materials with a matrix significantly different from that of the standard (polyethylene in this work).Precision ranged between 5% and 10% RSD for elements found at the 10 μg g 1 level or higher, while this value could deteriorate to 20% for analytes found at the sub-μg g 1 level. Overall, the technique evaluated presents many advantages for the fast and accurate multi-element analysis of these materials, avoiding laborious digestion procedures and minimizing the risk of analyte losses due to the formation of volatile compounds.  相似文献   

6.
Selenium was determined in samples with high copper and iron contents by hydride generation-inductively coupled plasma optical emission spectrometry (HG-ICP-OES) after flow-injection (FI) on-line copper and iron removal and selenium(VI) reduction. A Dowex 1X-8 anion-exchange microcolumn was used for the separation of selenium from copper and iron as their chloro-complexes. Se(VI) was then reduced on-line by heating a PTFE coiled reactor (150 cm long, 0.7 mm i.d.) in a 100°C water bath. After reduction of Se(VI), a 900-μl sample was injected into the carrier stream containing hydrochloric acid and sodium tetrahydroborate to generate the hydride. A limit of detection of 0.4 μg l−1 (RSD 2.3% for 20 μg l−1 selenium) was obtained. The application of the method to Geochemical Standard Reference Samples and copper metal reference materials (MBH) demonstrated that results were in good statistical accordance with certified values.  相似文献   

7.
High concentration of added hydrogen fluoride converted the seawater chloride to the corresponding fluoride matrix, and the liberated hydrochloric acid could be removed during the drying step. The atomization of cadmium and lead could be performed at a relatively low temperature (∼1300 °C) at which the vaporization of the fluoride matrix was relatively slow, and the corresponding weak background signals could be separated from the analytical signals in time. Experimental conditions for the determination of Cd and Pb in seawater in the presence of HF were optimized with the use of the a priori calculation of the limit of detection. The experimental limit of detection obtained for Cd and Pb were, respectively, 0.007 and 0.25 μg l−1 for a 15-μl seawater sample (3σ, 20 replicates). The concentrations of Cd determined in a SLEW-1 estuarine water and a CASS-2 seawater were 0.020±0.002 and 0.016±0.002 μg l−1 Cd, respectively, in good agreement with the 0.018±0.003 and 0.019±0.004 μg l−1 Cd certified values (At the 95% confident level, 10 replicates).  相似文献   

8.
Samples (0.1 g) containing molybdenum disulphide are digested with aqua regia or with a (1 + 1) hydrofluoric/nitric acid mixture, without complete destruction of the matrix, and the molybdenum is determined in an air/acetylene flame, after emulsification with a non-ionic surfactant (Nemol K-39). The detection limit is ca. 30 μg Mo g?1, and the r.s.d. is 2.9% for 6 analyses of a sample containing 6.5 mg Mo g?1.  相似文献   

9.
The sample is decomposed with hydrofluoric and nitric acids and the diluted solution is injected into the graphite furnace. For a 100-mg sample, the detection limit (3 σ) is 1.2 μg AI g-1. The coefficient of variation is 3–13% for 9–7000 μg Al g-1 in silicon.  相似文献   

10.
The determination of chromium (VI) compounds in plants by electrothermal atomic absorption spectrometry (ET AAS) is proposed based on their leaching with 0.1 M Na2CO3. Due to the presence of relatively high amounts of Na2CO3 in the resulting samples, the temperature and time of pyrolysis and atomization stages must be optimized to minimize the influence of the matrix. A limit of detection (LOD) for determination of Cr(VI) in plants by ET AAS was found to be 0.024 μg g−1.The concentration of Cr(VI) and total chromium in plants collected in different geographical areas (South Africa and Russia), grown on soils high in chromium was determined. The concentration of Cr(VI) and total Cr in stems and leaves of plants was in the range of 0.04–0.7 μg g−1 and 0.5–10 μg g−1, respectively. The limited uptake of Cr(III) by plants, in comparison to its concentration in soil, can be explained by the very low solubility of natural Cr(III) compounds.Results for the determination of Cr(VI) were confirmed by the analysis of BCR CRM 545 (Cr(VI) in welding dust) with good agreement between certified (39.5 ± 1.3 μg mg−1) and found (38.8 ± 1.2 μg mg−1) values. The total concentration of Cr in plants has also been determined by ET AAS after dry ashing of samples at 650 °C. Results were confirmed by the analysis of BCR CRM 281 (Trace elements in Rye Grass) with good agreement between the found (2.12 ± 0.16 μg g−1) and certified value (2.14 ± 0.12 μg g−1).  相似文献   

11.
Application of concentrated HCl as a solvent and triammonium citrate (TAC) as a chemical modifier is advantageous for the determination of Er and Nd dopants in bismuth tellurite (Bi2TeO5) single crystals by graphite furnace atomic absorption spectrometry (GFAAS). The use of mini-flow of the internal gas, instead of gas stop, results in better precision at a price of a relatively small decrease in sensitivity. By evaluating integrated absorbance (Aint) signals for the GFAAS measurements (in the presence of matrix and TAC additive), characteristic mass values of 42 and 320 pg, and a limit of detection (LOD) of 4.9 and 131 μg l−1 are found for Er and Nd, respectively. These LOD data correspond to 0.78 μg g−1 Er and 21 μg g−1 Nd in the solid samples. The calibration curves are linear up to 0.33 and 2.9 mg l−1 concentrations in the solutions of Er and Nd, respectively. The ratio of the Aint signals of Er and Nd under gas stop and mini-flow were found near constant (1.34) with and without the matrix plus TAC. According to the vaporisation studies by graphite furnace electrothermal vaporisation inductively coupled plasma atomic emission spectrometry (GF-ETV-ICP-AES), the vaporisation of Bi and Te components of the solid Bi2TeO5 can be completed at 1200°C in a relatively short time, ensuring a preconcentration for the Er and Nd dopants, which do not vaporise below 2200°C in an argon atmosphere. On the other hand, fast vaporisation can be performed for the analytes at 2200°C with the use of CCl4 vapour (∼0.5 v/v%) in the internal furnace gas (Ar). It was estimated for the Er analyte that by applying 10 mg of solid sample in the GF-ETV device (dispensed into a graphite sample boat) and using a two-step heating procedure (prevaporisation of the matrix in argon and vaporisation of the analyte in a chlorinating atmosphere), the lower limit of the quantitative determination with the ICP-AES method would be approximately one order of magnitude better than attainable with the GFAAS method based on dissolution.  相似文献   

12.
Four inductively coupled plasma mass spectrometric methods: nebulization sample introduction with external calibration; hydride generation with external calibration; isotope dilution with nebulization; and isotope dilution with hydride generation, have been tested and compared. Multimode Sample Introduction System (MSIS™) was employed in either nebulization or hydride generation mode. Best limits of detection (below 0.1 μg L 1) and accuracy were obtained for isotope dilution techniques in hydride generation and sample nebulization mode. A mixture of HNO3 and H2O2 served both for microwave-assisted digestion as well as a medium for subsequent plumbane generation. Optimal reagent concentrations for hydride generation stage were 0.1 mol L 1 HNO3, 0.28 mol L 1 H2O2 and 1.5% m/v NaBH4. Critical effects of acidity, blanks and concomitants have been discussed. Analytical methods were validated by use of plant and water certified reference materials and spiked high-salt solutions (seawater and 20% m/v NaCl) at lead levels in nanograms per gram to micrograms per gram range.  相似文献   

13.
Analytical schemes for the determination of trace elements in high-purity niobium, tantalum and their oxides are proposed. The schemes are based on microwave dissolution of the metals and oxides followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of impurities in the solutions. The possibilities of interelement and off-peak background corrections in ICP-AES analysis are discussed. The accuracy of the results obtained is confirmed by the determination of trace elements after a matrix sorption separation procedure. For a number of elements, a comparison of the results obtained by ICP-AES without and with the matrix separation procedure and by electrothermal atomic absorption spectrometry (ETAAS) shows good agreement. The limits of detection for direct ICP-AES determination are in the range 0.4*1.0 μg g−1 for Ba, Ca, Fe, Mg, Mn, Y and La; between 2.0 and 10.0 μ g−1 for B, Cd, Co, Cr, Cu, Hf, Mo, Na, Nb, Ni, Pb, Sr, Ti, Zr and Ta; and for K, Sb and W a detection limit of 20 μ g−1 is achieved. The schemes proposed are intended for rapid routine analysis.  相似文献   

14.
The indirect determination of chloride in water is based on measurement of the difference in conductivity after the sample has passed through ion-exchange columns in the hydrogen form and silver form. The linear response range is about 0.5–10 μg g?1 chloride (with 3 μg g?1 nitrate and 5 μg g?1 sulfate); the detection limit is about 50 ng g?1 chloride but depends strongly on the concentrations of other anions.  相似文献   

15.
Solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS) was investigated as a potential technique for the routine determination of trace elements in mineral coal and cadmium, copper and lead were chosen as the model elements. Cadmium and lead could be determined at their main resonance lines at 228.8 nm and 283.3 nm, respectively, but an alternate, less sensitive line had to be used for the determination of copper because of the high copper content in coal. No modifier was necessary for the determination of copper and calibration against aqueous standards provided sufficient accuracy of the results. For the determination of cadmium and lead two different modifiers were investigated, palladium and magnesium nitrates in solution, added on top of each sample aliquot before introduction into the atomizer tube, and ruthenium as a ‘permanent’ modifier. Both approaches gave comparable results, and it is believed that this is the first report about the successful use of a permanent chemical modifier in SS-GF AAS. Calibration against solid standards had to be used for the determination of cadmium and lead in order to obtain accurate values. The agreement between the values found by the proposed procedure and the certificate values for a number of coal reference materials was more than acceptable for routine purposes. The detection limits calculated for 1 mg of coal sample using the ‘zero mass response’ were 0.003 and 0.007 μg g−1 for cadmium with the permanent modifier and the modifier solution, respectively, approximately 0.04 μg g−1 for lead, and 0.014 μg g−1 for copper.  相似文献   

16.
A homogenized 193 nm excimer laser with a flat-top beam profile was used to study the capabilities of LA-ICP-MS for ‘quasi’ non-destructive fingerprinting and sourcing of sapphires from different locations. Sapphires contain 97–99% of Al2O3 (corundum), with the remainder composed of several trace elements, which can be used to distinguish the origin of these gemstones. The ablation behavior of sapphires, as well as the minimum quantity of sample removal that is required to determine these trace elements, was investigated. The optimum ablation conditions were a fluency of 6 J cm−2, a crater diameter of 120 μm, and a laser repetition rate of 10 Hz. The optimum time for the ablation was determined to be 2 s, equivalent to 20 laser pulses. The mean sample removal was 60 nm per pulse (approx. 3 ng per pulse). This allowed satisfactory trace element determination, and was found to cause the minimum amount of damage, while allowing for the fingerprinting of sapphires. More than 40 isotopes were measured using different spatial resolutions (20–120 μm) and eight elements were reproducibly detected in 25 sapphire samples from five different locations. The reproducibility of the trace element distribution is limited by the heterogeneity of the sample. The mean of five or more replicate analyses per sample was used. Calibration was carried out using NIST 612 glass reference material as external standard. The linear dynamic range of the ICP-MS (nine orders of magnitude) allowed the use of Al, the major element in sapphire, as an internal standard. The limits of detection for most of the light elements were in the μg g−1 range and were better for heavier elements (mass >85), being in the 0.1 μg g−1 range. The accuracy of the determinations was demonstrated by comparison with XRF analyses of the same set of samples. Using the quantitative analyses obtained using LA-ICP-MS, natural sapphires from five different origins were statistically classified using ternary plots and principal multi-component analysis.  相似文献   

17.
A sequential injection (SI) method for the determination of mercury via cold vapor atomic absorption spectrophotometry is presented. The method differs from flow injection (FI) cold vapor methods for the determination of mercury because of the simplicity of the system required for the method: one pump, one valve, a gas-liquid separator, and an atomic absorption spectrophotometer equipped with a quartz cell. Under optimal conditions, the method has the following figures of merit: a linear ¶calibration range of 1.0 to 20 μg L–1; a detection limit of 0.46 μg L–1; and a precision of 0.90% RSD (8 μg L–1). The procedure allows for a sampling rate of one injection per 80 s (excluding sample pretreatment). Results from the determination of mercury in water and fish specimens are also presented. The figures of merit of the method are compared to two other SI methods for the determination of mercury.  相似文献   

18.
Trace amounts of aluminium in aqueous samples can be determined by ion chromatography using ammonium sulphate-nitric acid as eluent and pyrocatechol violet as post-column chromogenic reagent. The detection limit for a 50-μl sample is 10 μg 1?1. Preconcentration of the sample (obtained by replacing the sampling loop with a short ion-exchange column) allows larger amounts of sample to be loaded and lowers the detection limit below 1 μg 1?1.  相似文献   

19.
The minimization of copper and nickel interference on the determination of antimony by hydride generation atomic absorption spectrometry using picolinic acid and l-cysteine as masking agents was studied. Concentrations up to 4000 and 1000 mg l−1 of nickel and copper respectively were found to be tolerable in the presence of picolinic acid. The simultaneous presence of both transition metals could be tolerated by using a mixture of picolinic acid and l-cysteine. In the analysis of a nickel oxide certified reference material good agreement between the recommended and found values was verified. A detection limit (3 s, n=10) of 0.1 μg Sb g−1 in the original sample was estimated.  相似文献   

20.
Arsenic compounds were determined in 21 urine samples collected from a male volunteer. The volunteer was exposed to arsenic through either consumption of codfish or inhalation of small amounts of (CH3)3As present in the laboratory air. The arsenic compounds in the urine were separated and quantified with an HPLC–ICP–MS system equipped with a hydraulic high-pressure nebulizer. This method has a determination limit of 0.5 μg As dm−3 urine. To eliminate the influence of the density of the urine, creatinine was determined and all concentrations of arsenic compounds were expressed in μg As g−1 creatinine. The concentrations of arsenite, arsenate and methylarsonic acid in the urine were not influenced by the consumption of seafood. Exposure to trimethylarsine doubled the concentration of arsenate and increased the concentration of methylarsonic acid drastically (0.5 to 5 μg As g−1 creatinine). The concentration of dimethylarsinic acid was elevated after the first consumption of fish (2.8 to 4.3 μg As g−1 creatinine), after the second consumption of fish (4.9 to 26.5 μg As g−1 creatinine) and after exposure to trimethyl- arsine (2.9 to 9.6 μg As g−1 creatinine). As expected, the concentration of arsenobetaine in the urine increased 30- to 50-fold after the first consumption of codfish. Surprisingly, the concentration of arsenobetaine also increased after exposure to trimethylarsine, from a background of approximately 1 μg As g−1 creatinine up to 33.1 μg As g−1 creatinine. Arsenobetaine was detected in all the urine samples investigated. The arsenobetaine in the urine not ascribable to consumed seafood could come from food items of terrestrial origin that—unknown to us—contain arsenobetaine. The possibility that the human body is capable of metabolizing trimethyl- arsine to arsenobetaine must be considered. © 1997 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号