首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《中国化学快报》2021,32(11):3591-3595
Crystalline engineering and heterostructure have attracted much attention as effective strategies to improve the electrocatalytic activity for hydrogen evolution reaction (HER). In this study, a new heterostructure catalyst (Ru/RuS2@N-rGO) with low crystallinity was fabricated by a simple and low-temperature method for HER in alkaline solution, applying the Na2SO4 as S source and polypyrrole as N source. Optimizing through the controllable crystalline engineering and composition ratio of Ru and RuS2, the Ru/RuS2@N-rGO heterocatalyst at the calcining 500 °C revealed highly efficient HER activity with overpotential 18 mV at a current density 10 mA/cm2 and remarkable stability for 24 h in 1.0 mol/L KOH. This work provides a facile and effective method in designing advanced electrocatalysts for HER in the alkaline electrolytes by synergistically structural and component modulations.  相似文献   

2.
Hydrogen energy is considered as one of the ideal clean energies for solving the energy shortage and environmental issues, and developing highly efficient electrocatalysts for overall water splitting to produce hydrogen is still a huge challenge. Herein, for the first time, Ru-doped Cu2+1O vertically arranged nanotube arrays in situ grown on Cu foam (Ru/Cu2+1O NT/CuF) are reported and further investigated for their catalytic properties for overall water splitting. The Ru/Cu2+1O NT/CuF presents ultrahigh catalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline conditions, and it exhibits a small overpotential of 32 mV at 10 mA cm−2 in the HER, and only needs 210 mV overpotential to achieve a current density of 10 mA cm−2 in the OER. Importantly, the alkaline electrolyzer using Ru/Cu2+1O NT/CuF as a bifunctional electrocatalyst only needs 1.53 V voltage to deliver a current density of 10 mA cm−2, which is much lower than the benchmark of IrO2(+)/Pt(−) counterpart (1.64 V at 10 mA cm−2). The excellent performance of the Ru/Cu2+1O NT/CuF catalyst is attributed to its high conductive substrate and special Ru-doped nanotube structure, which provides a high electrochemical active surface area and 3D gas diffusion channel.  相似文献   

3.
Highly active and durable electrocatalysts are essential for producing hydrogen fuel through the hydrogen evolution reaction (HER). Here, a uniform deposition of Ru nanoparticles strongly interacting with oxygen-rich carbon nanotube architectures (Ru-OCNT) through ozonation and hydrothermal approaches has been designed. The hierarchical structure of Ru-OCNT is made by self-assembly of oxygen functionalities of OCNT. Ru nanoparticles interact strongly with OCNT at the Ru/OCNT interface to give excellent catalytic activity and stability of the Ru-OCNT, as further confirmed by density functional theory. Owing to the hierarchical structure and adjusted surface chemistry, Ru-OCNT has an overpotential of 34 mV at 10 mA cm−2 with a Tafel slope of 27.8 mV dec−1 in 1 M KOH, and an overpotential of 55 mV with Tafel slope of 33 mV dec−1 in 0.5 M H2SO4. The smaller Tafel slope of Ru-OCNT than Ru-CNT and commercial Pt/C in both alkaline and acidic electrolytes indicates high catalytic activity and fast charge transfer kinetics. The as-proposed chemistry provides the rational design of hierarchically structured CNT/nanoparticle electrocatalysts for HER to produce hydrogen fuel.  相似文献   

4.
Exploring highly efficient electrocatalysts and understanding the reaction mechanisms for hydrogen electrocatalysis,including hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in alkaline media are conducive to the conversion of hydrogen energy.Herein,we reported a new strategy to boost the HER/HOR performances of ruthenium (Ru) nanoparticles through nitrogen (N) modification.The obtained N-Ru/C exhibit remarkable catalytic performance,with normalized HOR exchange current d...  相似文献   

5.
《中国化学快报》2022,33(11):4930-4935
Exploring efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) electrocatalysts is crucial for developing water splitting devices. The composition and structure of catalysts are of great importance for catalytic performance. In this work, a heterogeneous Ru modified strategy is engineered to improve the catalytic performance of porous NiCo2O4 nanosheets (NSs). Profiting from favorable elements composition and optimized structure property of decreased charge transfer barrier, more accessible active sites and increased oxygen vacancy concentration, the Ru-NiCo2O4 NSs exhibits excellent OER activity with a low overpotential of 230 mV to reach the current density of 10 mA/cm2 and decent durability. Furthermore, Ru-NiCo2O4 NSs show superior HER activity than the pristine NiCo2O4 NSs, as well. When assembling Ru-NiCo2O4 NSs couple as an alkaline water electrolyzer, a cell voltage of 1.60 V can deliver the current density of 10 mA/cm2. This work provides feasible guidance for improving the catalytic performance of spinel-based oxides.  相似文献   

6.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm?2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm?2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

7.
An Ru-doping strategy is reported to substantially improve both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) electrocatalytic activity of Ni/Fe-based metal–organic framework (MOF) for overall water splitting. As-synthesized Ru-doped Ni/Fe MIL-53 MOF nanosheets grown on nickel foam (MIL-53(Ru-NiFe)@NF) afford HER and OER current density of 50 mA cm−2 at an overpotential of 62 and 210 mV, respectively, in alkaline solution with a nominal Ru loading of ≈110 μg cm−2. When using as both anodic and cathodic (pre-)catalyst, MIL-53(Ru-NiFe)@NF enables overall water splitting at a current density of 50 mA cm−2 for a cell voltage of 1.6 V without iR compensation, which is much superior to state-of-the-art RuO2-Pt/C-based electrolyzer. It is discovered that the Ru-doping considerably modulates the growth of MOF to form thin nanosheets, and enhances the intrinsic HER electrocatalytic activity by accelerating the sluggish Volmer step and improving the intermediate oxygen adsorption for increased OER catalytic activity.  相似文献   

8.
A challenging but pressing task to design and synthesize novel, efficient, and robust pH-universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru-M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH-universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm−2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm−2. This performance is among the best catalytic activities reported for any platinum-free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.  相似文献   

9.
《中国化学快报》2022,33(9):4367-4374
Rational design and building of high efficiency, secure and inexpensive electrocatalyst is a pressing demand and performance to promote sustainable improvement of hydrogen energy. The bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution response (HER) with high catalytic performance and steadiness in the equal electrolyte are extra treasured and meaningful. Herein, a unique three-dimensional (3D) structure electrocatalyst for NiCo2S4 growing on the flower-like NiFeP was designed and synthesized in this study. The results show that the flower-like NiCo2S4/NiFeP/NF composite electrocatalyst has large specific surface area, appropriate electrical conductivity, and greater lively websites uncovered in the three-dimensional structure, and affords extraordinary electrocatalytic overall performance for the ordinary water splitting. In alkaline solution, the OER and HER overpotentials of NiCo2S4/NiFeP/NF only need 293 mV and 205 mV overpotential to provide the current densities of 100 mA/cm2 and 50 mA/cm2, respectively. This high electrocatalytic activity exceeds the catalytic activity of most nickel-iron based electrocatalysts for OER and HER process. Accordingly, the optimized NiCo2S4/NiFeP/NF sample has higher stability (24 h) at 1.560 and 10 mA/cm2, which extensively speeds up the overall water splitting process. In view of the above performance, this work offers a fine approach for the further improvement of low fee and excessive effectivity electrocatalyst.  相似文献   

10.
《中国化学快报》2023,34(4):107622
Controlling the particle size of catalyst to understand the active sites is the key to design efficient electrocatalysts toward hydrogen electrode reactions including hydrogen oxidation and evolution (HOR/HER). Herein, the hydrogen and hydroxyl adsorption on Ru/C could be effectively tuned for HOR/HER by simple controlling the particle sizes. It is found that the metallic Ru (Ru0) is the active site for HOR/HER, while oxidized Ru (Rux+) will hinder the adsorption and desorption of hydrogen on the catalyst. For the HOR, catalyst with small particles is more efficient, due to it is a three-phase interface reaction of gas on the surface of the catalyst. For the HER, the metallic state of Ru is crucial. The deconvolution of hydrogen peaks indicates that the catalytic sites with low hydrogen binding energy (HBE) shoulder the majority of the HOR activity. CO stripping curve further demonstrates that the stronger hydroxyl species (OHad) affinity is beneficial to promote the HOR performance. The results indicate that the design of efficient HOR/HER catalyst should focus on the balance between particle size and metallic states.  相似文献   

11.
The utilization of noble-metal catalysts for the hydrogen evolution reaction (HER) provides an efficient strategy for hydrogen acquisition. However, exploring catalysts with suitable hydrogen binding strength for the HER process is always of great importance, but extremely challenging. In this work, sulfur and phosphor as electron-withdrawing elements were incorporated into carbon nanotube (CNT)-supported Ru catalysts, which were prepared through a facile solution reduction reaction and post thermo treatment. Owing to the suitable electronegativity provided by P and synergistic effects of the carbon nanotubes, the RuP2/CNT achieved a high catalytic performance as a HER electrocatalyst. This may result from the modulation effect of the electronic properties and the depressed adsorption free energy of RuP2. Electrochemical tests present that the RuP2/CNT composite exhibit a small overpotential of 58 mV at 10 mA cm−2 in acidic electrolyte. In a neutral or alkaline environment, the overpotential is 82 and 40 mV, respectively. The RuP2/CNT electrode also possesses stable durability for long-time cycling, suggesting its remarkable property as promising all-pH HER catalyst.  相似文献   

12.
TiO2 Co nanotubes decorated with nanodots (TiO2 NDs/Co NSNTs‐CFs) are reported as high‐performance earth‐abundant electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution. TiO2 NDs/Co NSNTs can promote water adsorption and optimize the free energy of hydrogen adsorption. More importantly, the absorbed water can be easily activated in the presence of the TiO2–Co hybrid structure. These advantages will significantly promote HER. TiO2 NDs/Co NSNTs‐CFs as electrocatalysts show a high catalytic performance towards HER in alkaline solution. This study will open up a new avenue for designing and fabricating low‐cost high‐performance HER catalysts.  相似文献   

13.
Metal-support interaction(MSI) is an efficient way in heterogeneous catalysis and electrocatalysis to modulate the electronic structure of metal for enhanced catalytic activity. However, there are still great challenges in promoting the hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) simultaneously by this way. Herein, Fe-doped Co3O4 supported Ru(Ru/FeCo) catalysts are synthesized by MSI strategies to further improve the electrocatalytic activity and sta...  相似文献   

14.
将超小Ru纳米团簇锚定于富含氧空位MoO3-x纳米带的双功能催化剂(Ru/MoO3-x)。该催化剂展现出优异的肼氧化(HzOR)和析氢反应(HER)催化性能,10 mA·cm-2时的过电势分别为-79和-27 mV,所组成的肼辅助电催化全解水(OWS)的电解池电压仅为13 mV,明显优于商业化20% Pt/C和已报道的一些催化剂。如此优异的性能主要归因于Ru纳米团簇有利于HzOR中N2H4的脱氢和HER氢中间体的吸/脱附平衡以及MoO3-x中的氧空位和Ru/MoO3-x异质结构导致的丰富的电化学活性位点和优化的电子转移动力学。  相似文献   

15.
Electrochemical water splitting for hydrogen generation is a vital part for the prospect of future energy systems, however, the practical utilization relies on the development of highly active and earth‐abundant catalysts to boost the energy conversion efficiency as well as reduce the cost. Molybdenum diselenide (MoSe2) is a promising nonprecious metal‐based electrocatalyst for hydrogen evolution reaction (HER) in acidic media, but it exhibits inferior alkaline HER kinetics in great part due to the sluggish water adsorption/dissociation process. Herein, the alkaline HER kinetics of MoSe2 is substantially accelerated by heteroatom doping with transition metal ions. Specifically, the Ni‐doped MoSe2 nanosheets exhibit the most impressive catalytic activity in terms of lower overpotential and larger exchange current density. The density functional theory (DFT) calculation results reveal that Ni/Co doping plays a key role in facilitating water adsorption as well as optimizing hydrogen adsorption. The present work paves a new way to the development of low‐cost and efficient electrocatalysts towards alkaline HER.  相似文献   

16.
A highly active FeSe2 electrocatalyst for durable overall water splitting was prepared from a molecular 2Fe‐2Se precursor. The as‐synthesized FeSe2 was electrophoretically deposited on nickel foam and applied to the oxygen and hydrogen evolution reactions (OER and HER, respectively) in alkaline media. When used as an oxygen‐evolution electrode, a low 245 mV overpotential was achieved at a current density of 10 mA cm−2, representing outstanding catalytic activity and stability because of Fe(OH)2/FeOOH active sites formed at the surface of FeSe2. Remarkably, the system is also favorable for the HER. Moreover, an overall water‐splitting setup was fabricated using a two‐electrode cell, which displayed a low cell voltage and high stability. In summary, the first iron selenide material is reported that can be used as a bifunctional electrocatalyst for the OER and HER, as well as overall water splitting.  相似文献   

17.
Designing cost-effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active-center-transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co-catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co-catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm−2 for HER and OER in alkaline medium, respectively.  相似文献   

18.
《中国化学快报》2020,31(9):2512-2515
Ru and Co are highly dispersed on the surface of TiO2 nanoparticles with an easy coprecipitation method to fabricate a novel Ru-based catalyst (Ru/Co-TiO2). The fabricated Ru/Co-TiO2 catalyst exhibits superior catalytic performance for promoting NaBH4 hydrolysis in alkaline medium, showing an impressive hydrogen generation rate per gram Ru as high as 172 L min−1 gRu-1, which is better than most of recently reported Ru-based catalysts. In addition, the fabricated Ru/Co-TiO2 catalyst also shows excellent durability in cycle use, with only 2.9% activity loss after being used for 5 cycles. These advantages make the developed Ru/Co-TiO2 catalyst a potential choice for promoting hydrogen generation from NaBH4 hydrolysis.  相似文献   

19.
Interface engineering has been applied as an effective strategy to boost the electrocatalytic performance because of the strong coupling and synergistic effects between individual components. Here, we engineered vertically aligned FeOOH/CoO nanoneedle array with a synergistic interface between FeOOH and CoO on Ni foam (NF) by a simple impregnation method. The synthesized FeOOH/CoO exhibits outstanding electrocatalytic activity and stability for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in an alkaline medium. For the overall water splitting, the bifunctional FeOOH/CoO nanoneedle catalyst requires only a cell voltage of 1.58 V to achieve a current density of 10 mA cm−2, which is much lower than that required for IrO2//Pt/C (1.68 V). The FeOOH/CoO catalyst has been successfully applied for solar cell-driven water electrolysis, revealing its great potential for commercial hydrogen production and solar energy storage.  相似文献   

20.
Optimizing the electronic and synergistic effect of hybrid electrocatalysts based on Pt and Pt-based nanocatalysts is of tremendous importance towards a superior hydrogen evolution performance under both acidic and alkaline conditions. However, developing an ideal Pt-based hydrogen evolution reaction (HER) electrocatalyst with moderated electronic structure as well as strong synergistic effect is still a challenge. Herein, we fabricated boron (B)-doped PtNi nanobundles by a two-step method using NaBH4 as the boron source to obtain PtNi/Ni4B3 heterostructures with well-defined nanointerfaces between PtNi and Ni4B3, achieving an enhanced catalytic HER performance. Especially, the PtNi/Ni4B3 nanobundles (PtNi/Ni4B3 NBs) can deliver a current density of 10 mA cm−2 at the overpotential of 14.6 and 26.5 mV under alkaline and acidic media, respectively, as well as outstanding electrochemical stability over 40 h at the current density of 10 mA cm−2. Remarkably, this approach is also universal for the syntheses of PtCo/Co3B and PtFe/Fe49B with outstanding electrocatalytic HER performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号