首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
In recent years,power conversion efficiency(PCE)of organic solar cells(OSCs)has made significant improvement.A large number of studies were reported to achieve high PCEs through exploring new active layer materials,especially the high efficiency fused ring acceptors(FRAs).Compared with FRAs,another type of so-called unfused-ring acceptors(UFAs),possessing some advantages such as simple synthesis and low cost,have attracted a lot of attention.Herein,a new UFA BTzO-4F,incorporating with a benzotriazole moiety and S···O intramolecular noncovalent interactions,has been successfully synthesized.The photovoltaic device based on PBDB-T:BTzO-4F achieved a record PCE of 13.8%for UFAs,which indicates that introducing the benzotriazole moiety is an effective strategy for high quality acceptors.Thus,these findings of this work demonstrate the great potential of UFAs for high performance OSCs.  相似文献   

2.
One important subject in the field of all-polymer solar cells(all-PSCs) is the exploration of electron-deficient building blocks with optimized physicochemical properties to promote the performance of polymer acceptors. Here, two ladder-type heteroheptacene-containing small-molecule acceptors with branched 2-octyldodecyl or 2-hexyldecyl side-chains are synthesized and polymerized with the thiophene comonomer to afford polymer acceptors(PW-OD and PW-HD) with strong near-infrared absorption. Exper...  相似文献   

3.
<正>Organic solar cells (OSCs) are promising to access flexible,light weight and semi-transparent photovoltaic devices by low-cost solution fabrication. Recently, the fused-ring nonfullerene acceptors play an important role in promoting the research progress of the OSCs. The power conversion efficiencies (PCEs) have been rapidly boosted to over 14%in single junction OSCs with the development of new nonfullerene acceptors and the related devices [1–3]. Although  相似文献   

4.
Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(VOC) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs.  相似文献   

5.
Chen  Fan  Hu  Jun  Wang  Xingdong  Shao  Shiyang  Wang  Lixiang  Jing  Xiabin  Wang  Fosong 《中国科学:化学(英文版)》2020,63(8):1112-1120
Three kinds of through-space charge transfer(TSCT) blue polymers containing non-conjugated polystyrene backbone together with spatially-separated acridan donor and oxygen-bridged triphenylboron acceptors having different substituents of tert-butyl,hydrogen and fluorine are designed and synthesized. The designed TSCT blue polymers possess photoluminescence quantum yields up to 70% in solid-state film, single-triplet energy splitting below 0.1 eV, and typical thermally activated delayed fluorescence(TADF) effect. Meanwhile, the resulting polymers exhibit aggregation-induced emission(AIE) effect with emission intensity increased by up to ~27 folds from solution to aggregation state. By changing the substituent of acceptors to tune the charge transfer strength, blue emission with peaks from 444 to 480 nm can be realized for the resulting polymers.Solution-processed organic light-emitting diodes based on the polymers exhibit excellent device performance with Commission Internationale de L'Eclairage(CIE) coordinates of(0.16, 0.27), together with the maximum luminous efficiency of 30.7 cd A~(-1) and maximum external quantum efficiency of 15.0%, which is the best device efficiency for blue TADF polymers.  相似文献   

6.
Benefitting from low cost and simple synthesis,simple structured non-fused ring acceptors(NFRAs) and polymer donors are crucial for the application of organic solar cells(OSCs).Herein,two isomerized NFRAs,namely 4T-FCl FCl and 4T-2F2Cl,are designed with end-group engineering,which modulates the electrostatic potential distributions and crystallinity of acceptors,and accordingly,the A/A and D/A intermolecular interactions.The OSC based on 4T-2F2Cl with strong D/A interactions shows a record-high ...  相似文献   

7.
李小华  黄锦凡 《中国化学》2003,21(12):1543-1552
Molecular dynamics computer simulation based on the Born-Mayer-Huggins potential function has been carried out to study the effects of duster size and temperature on the nucleation rate of sodium chloride dusters in the temperature range of 580 K to 630 K. Clusters with 256 and 500 NaCl molecules have been studied and the results have been compared with those obtained from 108 molecule dusters. The melting point (MP) of the clusters were observed to increase with the size of the clusters and can be well described by a linear equation MP =1107(37)-1229(23)N^-1/3(N is the number of molecules in the duster).The nucleation rate was found to decrease with increasing the duster size or temperature. Various nucleation theories have been used to interpret the nucleation rates obtained from this molecular dynamics simulation. It is possible to use a constant diffuse interface thickness to interpret the nucleation rate from the diffuse interface theory in the temperature range of this study. However, the interfacinl free energy estimated from classical nucleation theory and diffuse interface theory increases too fast with increasing the temperature while that from Gran-Gunton theory does not change with changing temperatures.The sizes of critical nuclei estimated from all the theories are smaller than those estimated from our simulations.  相似文献   

8.
Non-fullerene organic acceptors have attracted increasing attention in recent years. One of the challenges in the synthesis of non-fullerene organic acceptors is to tune the absorption spectrum and molecular frontier orbitals, affording low bandgap molecules with improved absorption of the near-infrared solar photons. In this paper, we present the synthesis, optoelectronic and photovoltaic properties of a series of dimeric perylene diimide(PDI) based non-fullerene acceptors. These PDI dimers are bridged by oligothiophene(T) from 1T to 6T. With the increase of the oligothienyl size, the highest occupied molecular orbital(HOMO) energy is raised from ?5.65 to ?5.10 e V, while that of the lowest unoccupied molecular orbit(LUMO) is kept constant at ?3.84 e V, affording narrow bandgap from 1.81 to 1.26 e V. The absorption from the oligothiophene occurs between 350 and 500 nm, which is complementary to that from its bridged PDI units, leading to a wide spectral coverage from 350 to 850 nm. The optimal dihedral angle between the bridged two perylene planes is dependent on the oligothienyl size, varying from 5° to 30°. The solubility of the dimers depends on the oligothienyl size and can be tuned by the alkyl chains on the bridged thienyl units. The possible applications as the solution-processable non-fullerene organic acceptor is primarily studied using commercial P3 HT as the blend donor. The photovoltaic results indicate that 1T, 4T and 6T all yield a higher efficiency of ?1.2%, whereas 2T, 3T and 5T all give a lower efficiency of 0.5%. The difference in the cell performance is related with the tradeoff between the differences of absorption, HOMO level and film-morphology between these dimers.  相似文献   

9.
Nonfused ring electron acceptors(NFREAs) have attracted much attention due to their concise synthetic routes and low cost.However, developing high-performance NFREAs with simple structure remains a great challenge. In this work, a simple building block(POBT)with noncovalently conformational locks(No CLs) was designed and synthesized. Single-crystal X-ray study indicated the presence of S···O NOCLs in POBT, thus enabling it to possess a coplanar conformation comparable to that of fused-ring CPT. ...  相似文献   

10.
Fluorescence quenching processes of poly[2-methoxy-5-(2‘ethyl-hexoxy)-p-phenylene vinylene] (MEH-PPV) in solution by electron acceptors, O2 and acid, have been studied. Static quenching of the fluorescence from MEH-PPV by an electron acceptor (DDQ or TCNE) occurs due to electron transfer from MEH-PPV to the electron acceptor and this electron transfer quenching can be promoted by chloroform. Photooxidation takes place in the MEH-PPV solution and singlet oxygen is an intermediate in the photooxidation, according to the results of ESR spectroscopy. Acid also plays an important role in the fluorescence quenching process of MEH-PPV, by the protonation of the alkoxy groups in the molecular chain.  相似文献   

11.
Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs.  相似文献   

12.
Fused-ring electron acceptors have made significant progress in recent years, while the development of fully non-fused ring acceptors has been unsatisfactory. Here, two fully non-fused ring acceptors, o-4TBC-2F and m-4TBC-2F, were designed and synthesized. By regulating the location of the hexyloxy chains, o-4TBC-2F formed planar backbones, while m-4TBC-2F displayed a twisted backbone. Additionally, the o-4TBC-2F film showed a markedly red-shifted absorption after thermal annealing, which indicated the formation of J-aggregates. For fabrication of organic solar cells (OSCs), PBDB-T was used as a donor and blended with the two acceptors. The o-4TBC-2F-based blend films displayed higher charge mobilities, lower energy loss and a higher power conversion efficiency (PCE). The optimized devices based on o-4TBC-2F gave a PCE of 10.26 %, which was much higher than those based on m-4TBC-2F at 2.63 %, and it is one of the highest reported PCE values for fully non-fused ring electron acceptors.  相似文献   

13.
《中国化学快报》2023,34(8):107902
Non-fused ring electron acceptors (NFREAs) have a broad application prospect in the commercialization of organic solar cells (OSCs) due to the advantages of simple synthesis and low cost. The selection of intermediate block cores of non-fused frameworks and the establishment of the relationship between molecular structure and device performance are crucial for the realization of high-performance OSCs. Herein, two A-D-A’-D-A type NFREAs namely CBTBO-4F and CBTBO-4Cl, constructed with a novel electron-deficient block unit N-(2-butyloctyl)-carbazole[3,4-c:5,6-c]bis[1,2,5]thiadiazole (CBT) and bridging unit 4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b']dithiophene (DTC) coupling with different terminals (IC-2F/2Cl), were designed and synthesized. The two NFREAs feature broad and strong photoresponse from 500 nm to 900 nm due to the strong intramolecular charge transfer characteristics. Compared with CBTBO-4F, CBTBO-4Cl shows better molecular planarity, stronger crystallinity, more ordered molecular stacking, larger van der Waals surface, lower energy level and better active layer morphology, contributing to much better charge separation and transport behaviors in its based devices. As a result, the CBTBO-4Cl based device obtains a higher power conversion efficiency of 10.18% with an open-circuit voltage of 0.80 V and a short-circuit current density of 21.20 mA/cm2. These results not only demonstrate the great potential of CBT, a new building block of the benzothiazole family, in the construction of high-performance organic conjugated semiconductors, but also suggest that the terminal chlorination is an effective strategy to improve device performance.  相似文献   

14.
Two simple unfused-cores based electron acceptors with different side units were developed for application in non-fullerene solar cells, in which the side chains have the significant effect on their absorption spectra and photovoltaic performance.  相似文献   

15.
Polymer-fullerene composite solar cells   总被引:2,自引:0,他引:2  
Fossil fuel alternatives, such as solar energy, are moving to the forefront in a variety of research fields. Polymer-based organic photovoltaic systems hold the promise for a cost-effective, lightweight solar energy conversion platform, which could benefit from simple solution processing of the active layer. The function of such excitonic solar cells is based on photoinduced electron transfer from a donor to an acceptor. Fullerenes have become the ubiquitous acceptors because of their high electron affinity and ability to transport charge effectively. The most effective solar cells have been made from bicontinuous polymer-fullerene composites, or so-called bulk heterojunctions. The best solar cells currently achieve an efficiency of about 5%, thus significant advances in the fundamental understanding of the complex interplay between the active layer morphology and electronic properties are required if this technology is to find viable application.  相似文献   

16.
Three nonfused ring electron acceptors (NFREAs) TTC6,TT-C8T and TT-TC8 were purposefully designed and synthesized.The molecular geometry can be adjusted by the steric hindrance of lateral substituents.According to the DFT calculations,from TTC6 to TT-C8T and TT-TC8,planarity of the molecular backbone is gradually improved,accompanying with the enhancing of intramolecular charge transfer effect.As for TT-TC8,the two phenyl substituents are almost perpendicular to the molecular backbone,which endues the acceptor with good solubility and suppresses it to form over-aggregation.Multidirectional regular molecular orientation and closer molecular stacking are formed in TT-TC8 film.As a result,TT-TC8 based devices afford the highest PCE of 13.13%,which is much higher than that of TTC6 (4.41%) and TT-C8T (10.42%) and among the highest PCE values based on NFREAs.  相似文献   

17.
Over the past few years, non‐fullerene organic solar cells have been a focus of research and their power conversion efficiencies have been improved dramatically from about 6 % to over 14 %. In addition to innovations in non‐fullerene acceptors, the ongoing development of polymer donors has contributed significantly to the rapid progress of non‐fullerene organic solar cell performance. This Minireview highlights the polymer donors that enable high‐performance non‐fullerene organic solar cells. We show the impressive photovoltaic devices results achieved by some of important classes of conjugated polymer systems in non‐fullerene organic solar cells. We discuss the molecular design strategies as far as developing matching polymer donors for non‐fullerene acceptors. We conclude with a brief summary and outlook for advances in donor polymers required for commercialization.  相似文献   

18.
The prerequisite for commercially viable organic solar cells (OSC) is to reduce the efficiency-stability-cost gap. Therefore, the cost of organic materials should be reduced by minimizing the synthetic steps, yet maintaining the molecular planarity and efficiencies achieved by the fused ring acceptors (FRA). In this respect, developing non-fused ring acceptors (NFRA) with suitable functionalization to favor conformational planarity and effective molecular packing is beneficial and cost-effective. Presently, the power conversion efficiency (PCE) for NFRAs is around 16 %, yet lower than the 19 % achieved for FRAs. Despite their potential, a thorough understanding of the effective structural design of NFRAs is necessary for developing efficient OSCs. This article pays special attention to the molecular design concept for NFRAs developed in the last years and analyzed the approach toward materials design and efficiency improvement, an important step toward technological application.  相似文献   

19.
This review summarizes the recent progress of perylene diimide (PDI) derivatives used as the acceptor materials in non-fullerene organic solar cells. The resulting structure-property correlations and design strategies of this type of acceptors are discussed and commented, which will help to constructing high-performance PDI-based acceptor materials in the future. The problems at present and the effort direction are also pointed out in this review.  相似文献   

20.
Four hexachlorosubphthalocyanines SubPcCl6‐X bearing different axial substituents (X) have been synthesized for use as novel electron acceptors in solution‐processed bulk‐heterojunction organic solar cells. Subphthalocyanines are aromatic chromophoric molecules with cone‐shaped structure, good solution processability, intense optical absorption in the visible spectral region, appropriate electron mobilities, and tunable energy levels. Solar cells with subphthalocyanines as the electron acceptor and PTB7‐Th as the electron donor exhibit a power conversion efficiency up to 4 % and an external quantum efficiency approaching 60 % due to significant contributions from both the electron donor and the electron acceptor to the photocurrent, indicating a promising prospect of non‐fullerene acceptors based on subphthalocyanines and structurally related systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号