首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potentiometric biosensors are incredibly versatile tools with budding uses in industry, security, environmental safety, and human health. This mini-review on recent (2018–2020) advances in the field of potentiometric biosensors is intended to give a general overview of the main types of potentiometric biosensors for novices while still providing a brief but thorough summary of the novel advances and trends for experienced practitioners. These trends include the incorporation of nanomaterials, graphene, and novel immobilization materials, as well as a strong push toward miniaturized, flexible, and self-powered devices for in-field or at-home use.  相似文献   

2.
Liu  Yongchao  Teng  Lili  Liu  Hong-Wen  Xu  Chengyan  Guo  Haowei  Yuan  Lin  Zhang  Xiao-Bing  Tan  Weihong 《中国科学:化学(英文版)》2019,62(10):1275-1285
Photoacoustic imaging(PAI) is a non-destructive biomedical imaging technology with broad application prospects. PAI combines the advantages of optical imaging and ultrasound imaging with high selectivity and deep penetration to overcome the high scattering limitation of light in tissues. This emerging technology also achieves high-resolution and high-contrast imaging of deep tissue in vivo. Recently, photoacoustic(PA) probes based on organic dyes have emerged prominently in biosensing and bioimaging due to their excellent optical properties and structural adaptability. This paper gives an outline of the basic PAI principles and focuses on the application of organic-dye-based PA probes for molecular detection and in vivo imaging. The advantages of PAI technology and the drawbacks of current PA probes are then summarized. Finally, the prospects for application are evaluated considering the potential challenges in the biomedical fields.  相似文献   

3.
With the deepening of our understanding in life science, molecular biology, nanotechnology, optics, electrochemistry and other areas, an increasing number of biosensor design strategies have emerged in recent years, capable of providing potential practical applications for point-of-care (POC) diagnosis in various human diseases. Compared to conventional biosensors, the latest POC biosensor research aims at improving sensor precision, cost-effectiveness and time-consumption, as well as the development of versatile detection strategies to achieve multiplexed analyte detection in a single device and enable rapid diagnosis and high-throughput screening. In this review, various intriguing strategies in the recognition and transduction of POC (from 2018 to 2021) are described in light of recent advances in CRISPR technology, electrochemical biosensing, and optical- or spectra-based biosensing. From the perspective of promoting emerging bioanalytical tools into practical POC detecting and diagnostic applications, we have summarized key advances made in this field in recent years and presented our own perspectives on future POC development and challenges.

POC diagnostics are driven by the rapid advances in CRISPR, electrochemical and optical biosensors. Related emerging strategies are described and discussed from the perspective of facilitating the practical application of biosensors in POC testing.  相似文献   

4.
Light trapping based on the localized surface-plasmon resonance(LSPR)effect of metallic nanostructures is a promising strategy to improve the device performance of organic solar cells(OSCs).We review recent advances in plasmonic-enhanced OPVs with solution-processed metallic nanoparticles(NPs).The different types of metallic NPs(sizes,shapes,and hybrids),incorporation positions,and NPs with tunable resonance wavelengths toward broadband enhancement are systematically summarized to give a guideline for the realization of highly efficient plasmonic photovoltaics.  相似文献   

5.
6.
This review deals with recent advances in the field of electrochemical sensing and biosensing with nanoelectrode ensembles (NEEs) and nanoelectrode arrays (NEAs), focusing mainly on articles published since 2015. At first, a brief introduction on the properties and possible advantages which characterize electroanalytical signals at the NEE/NEA is presented, followed by an overview on the most recent theoretical advances concerning the modeling of relevant electrochemical signals. Novel nanofabrication methods and nanoelectrode materials are discussed together with original (bio)funtionalization procedures, suitable to obtain more sensitive and reliable sensors. Advanced applications of NEE/NEA-based sensors in the biological and biomedical field are presented, including their integration with living cells and application for neurochemical studies. Advances, present limits, and prospects for research in the area are finally discussed. As far as future research trends are concerned, on the one hand, there is a need for development of theoretical models which take into account specific effects that can rule electrochemistry with arrays of nanosized electrodes, such as double layer and quantum mechanical effects. On the other hand, frontier studies concerning the application of the NEE/NEA to the biomedical and neurochemical fields can open new tracks both to fundamental knowledge and application.  相似文献   

7.
The light-addressable potentiometric sensor (LAPS) represents a versatile platform for chemical and biosensing. Thanks to the light addressability, the flat sensor surface of a LAPS can be flexibly divided into areas or pixels, each functioning as an independent sensor that can be modified with various sensing materials for measuring different ions or molecules. Since it first appeared in the late 1980s, it has been applied to various cells and biological samples, driven by technological developments. In this short review, the principles of a LAPS and its variants are briefly described focusing on recent trends and applications to cells and biosensing.  相似文献   

8.
9.
Gold nanoparticles (AuNPs) have been extensively used in optical biosensing and bioimaging due to the unique optical properties. Biological applications including biosensing and cellular imaging based on optical properties of AuNPs will be reviewed in the paper. The content will focus on detection principles, advantages and challenges of these approaches as well as recent advances in this field.  相似文献   

10.
Persistent luminescence nanoparticles (PLNPs) are a series of emerging luminescent nanomaterials which can emit persistently after ceasing the external excitation. Due to the long decay time of persistent luminescence, the background autofluorescence in complex sample and tissues can be effectively eliminated, thus significantly improving the sensitivity of bioanalysis. Besides, such a long decay time of luminescence also makes PLNPs valuable for long-term bioimaging. Benefiting from these merits, PLNPs have been widely used for biomedical applications, especially biosensing and bioimaging. In this review, we conclude the progress in the application of PLNPs at biosensing and bioimaging in recent years, and also provide our understanding of the prospects.  相似文献   

11.
Persistent luminescence nanoparticles (PLNPs) refer to a series of luminescent nanomaterials that can swiftly store the excitation energy and emit persistently after ceasing the excitation. Due to the characteristics of quickly storing the excitation energy and slowly emitting luminescence for a long time after ceasing excitation, they can effectively diminish background fluorescence, and are ideal for fluorescent analysis, especially in autofluorescencefree biosensing and bioimaging.  相似文献   

12.
Water-soluble conjugated polymers with controlled molecular weight characteristics, absence of ionic groups, high emission quantum yields, and end groups capable of selective reactions of wide scope are desirable for improving their performance in various applications and, in particular, fluorescent biosensor schemes. The synthesis of such a structure is described herein. 2-Bromo-7-iodofluorene with octakis(ethylene glycol) monomethyl ether chains at the 9,9'-positions, i.e., compound 4, was prepared as the reactive premonomer. A high-yielding synthesis of the organometallic initiator (dppe)Ni(Ph)Br (dppe = 1,2-bis(diphenylphosphino)ethane) was designed and implemented, and the resulting product was characterized by single-crystal X-ray diffraction techniques. Polymerization of 4 by (dppe)Ni(Ph)Br can be carried out in less than 30 s, affording excellent control over the average molecular weight and polydispersity of the product. Quenching of the polymerization with [2-(trimethylsilyl)ethynyl]magnesium bromide yields silylacetylene-terminated water-soluble poly(fluorene) with a photoluminescence quantum efficiency of 80%. Desilylation, followed by copper-catalyzed azide-alkyne cycloaddition reaction, yields a straightforward route to introduce a wide range of specific end group functionalities. Biotin was used as an example. The resulting biotinylated conjugated polymer binds to streptavidin and acts as a light-harvesting chromophore to optically amplify the emission of Alexa Fluor-488 chromophores bound onto the streptavidin. Furthermore, the biotin end group makes it possible to bind the polymer onto streptavidin-functionalized cross-linked agarose beads and thereby incorporate a large number of optically active segments.  相似文献   

13.
Visible light-activated localized surface plasmon resonance-based photoelectrochemical detection is reported for the first time.  相似文献   

14.
Washburn AL  Bailey RC 《The Analyst》2011,136(2):227-236
By leveraging advances in semiconductor microfabrication technologies, chip-integrated optical biosensors are poised to make an impact as scalable and multiplexable bioanalytical measurement tools for lab-on-a-chip applications. In particular, waveguide-based optical sensing technology appears to be exceptionally amenable to chip integration and miniaturization, and, as a result, the recent literature is replete with examples of chip-integrated waveguide sensing platforms developed to address a wide range of contemporary analytical challenges. As an overview of the most recent advances within this dynamic field, this review highlights work from the last 2-3 years in the areas of grating-coupled, interferometric, photonic crystal, and microresonator waveguide sensors. With a focus towards device integration, particular emphasis is placed on demonstrations of biosensing using these technologies within microfluidically controlled environments. In addition, examples of multiplexed detection and sensing within complex matrices--important features for real-world applicability--are given special attention.  相似文献   

15.
16.
Understanding the pH evolution during endocytosis is essential for our comprehension of the fundamental processes of biology as well as effective nanotherapeutic design. Herein, we constructed a plasmonic Au@PANI core–shell nanoprobe, which possessed significantly different scattering properties under acidic and basic conditions. Encouragingly, the scattering signal of Au@PANI nanoprobes displayed a positive linear correlation with the pH value not only in PBS but also in nigericin-treated cells. Ultimately, benefiting from the excellent response properties as well as the excellent biocompatibility and stability, the Au@PANI nanoprobes have successfully enabled a dynamic assessment of the evolving pH in the endosomal package as the endosome matured from early to late, and eventually to the lysosome, by reporting scattering signal changes.

An Au@PANI core–shell plasmonic nanomaterial was constructed for visualizing the pH evolution during endocytosis.  相似文献   

17.
18.
Intact living cells, because of their simplicity of use and their ability to provide highly valuable functional information, are well suited to biosensing applications. Cells can be genetically engineered by introduction of reporter proteins, modified to achieve analyte selectivity for their sensing capabilities, and connected to a transducer to obtain whole-cell biosensors. These bioanalytical features are increasingly attracting attention in the pharmaceutical, environmental, medical, and industrial fields. Whole-cell biosensors based on different recognition elements and transduction mechanisms have been also incorporated into portable devices and, with recent advances in micro and nanofabrication and microfluidics technology, miniaturized to achieve single-cell level analysis. Cell immobilization, widely used in, for example, microbial biofermentors or bioremediation systems, is now emerging as an appealing way of integrating whole-cell biosensors into devices, to maintain long-term cell viability, to increase the reproducibility of the cell’s response, and to avoid the spread of genetically modified cells into the environment, the latter being very important when devices are used for analysis in the field. A plethora of materials and functionalized surfaces have been proposed for immobilization of microbial or mammalian cells, each one having peculiar advantages and limitations. This critical review highlights and discusses recent trends, together with selected bioanalytical applications of immobilized viable cells. In particular the review focuses on some aspects that seem to hold great promise for future applications of immobilized cells, spanning from microbial biosensors to microbial biofilms, cell microarrays, and single-cell analysis.  相似文献   

19.
An emitting nanoassembly composed of a novel amphiphilic cyclodextrin functionalised with a covalently appended fluorophore and an anionic porphyrin internalizes effectively in tumor cells, allowing simultaneously the detection of carrier and photosensitiser.  相似文献   

20.
邓亚美  王秀娟  杨敏莉  贺木易  张峰 《色谱》2020,38(7):741-749
食品质量与安全是政府、食品行业以及消费者十分关注的问题。为了保证食品质量与安全,需要对食品中的风险因子进行检测。传统的分析方法如生物化学方法和仪器分析方法(色谱法、色谱-质谱法)存在前处理比较复杂,耗时,对样品具有破坏性及无法获取目标物空间信息等缺点。因此,开发快速,无损,实时和可视化的检测技术十分重要,这也是食品领域研究的热点。近年来,高光谱成像技术融合了成像和光谱两种技术,可以作为一种用于食品质量和安全评估的非破坏性和实时检测的工具。拉曼光谱成像技术可以同时获得待测物的光谱和空间信息,具有快速,无损和低成本等优点,在食品安全评价和质量控制中也得到了成功应用。质谱成像技术不需要标记和染色,即可实现样品组织表面待测物的可视化和高通量分析。它作为一种分子可视化技术,可以获得食品中营养成分及内、外源性有害物质的空间分布信息,在食品领域也表现出良好的应用前景。本文检索了近几年国内外发表的成像技术在食品研究中的相关文献,介绍了高光谱成像技术、拉曼光谱成像技术和质谱成像技术的原理,并综述了它们在食品安全与质量控制中的应用。此外,本文分析和讨论了这几种成像技术的优缺点,并对成像技术在食品领域的发展...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号