首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high-throughput flow-injection — inductively coupled plasma mass spectrometry (ICP MS) analytical method was developed for the determination of mercury in gas condensates and carbon-rich solvents. The sample (undiluted or diluted 10-fold) was introduced via a modified total consumption micronebulizer working at a flow rate of 30 μl min 1 and fitted with a singlepass spray chamber. This low flow rate and the addition of oxygen (70 ml min 1) assured the plasma stability and reduced the carbon build-up on the interface and on ion lenses. A limit of detection of 0.5 ng g 1 (2.5 μl sample) was obtained owing to the reduction of dead volume and sample dispersion (peak-width was 3 s at half-height) in the liquid pass of the nebulizer. The elimination of the memory effect reduced the washout time down to 30 s which resulted in a throughput of ca. 60 h 1. The method was validated by the analysis of 3 gas condensates by cold vapour atomic absorption spectrometry.  相似文献   

2.
The use of a new HF-resistant tandem spray chamber arrangement consisting of a cyclonic spray chamber and a Scott-type spray chamber made from PFA and PEEK provides a straightforward approach for improving the performance of inductively coupled-mass spectrometry (ICP-MS). The characteristics of the tandem spray chamber were critically evaluated against a PEEK cyclonic and a PFA Scott-type spray chamber, respectively. Sensitivity across the entire mass range was increased by about three times compared to the conventional setup utilizing only one spray chamber. Precision of the results, especially at low signal intensities, improved by 160% and 31% compared to the cyclonic and Scott-type spray chamber, respectively. Using the tandem spray chamber, the oxide formation rate was lowered by about 50%. Signals as low as 30 counts could be determined under routine measurement conditions with a RSD of 2.4% thus allowing to precisely quantify small concentration differences at the ng l 1 concentration level. The excellent precision (0.02–0.07%) of 206Pb / 207Pb and 206Pb / 208Pb ratios determined in pore water samples was rather limited by the instrumental capabilities of the single collector ICP-MS instrument than by the performance of the tandem spray chamber.  相似文献   

3.
《Microchemical Journal》2011,97(2):337-343
An analytical protocol combining a headspace technique with gas chromatography and detection by photoionization detector and flame ionization detector (HS-GC-PID-FID) was developed. This procedure was used to measure volatile organic compounds (VOCs) in environmental aqueous matrices and was applied in determination of VOCs on the coast of Fortaleza, Brazil. At optimum operating conditions, analytical figures of merit such as linearity (R ranged from 0.9983 to 0.9993), repeatability (5.62 to 9.63% and 0.02 to 0.19% for the quantitative and qualitative analyses, respectively), detection limits (0.22 to 7.48 μg L1) and sensibility were estimated. This protocol favors a fast sampling/sample preparation (in situ), minimizes the use of laboratory material, eliminates the matrix effect from environmental samples, and can be applied to river, estuarine and oceanic waters. The advantage of detectors in series is that a low sensitivity in detection in one is compensated by the other. Toluene was the most abundant VOC in the studied area, with an average concentration of 1.63 μg L1. It was followed by o-xylene (1.15 μg L1), trichloroethene (1.08 μg L1), benzene (0.86 μg L1), ethylbenzene (0.74 μg L1), carbon tetrachloride (0.55 μg L1), m/p-xylene (0.48 μg L1) and tetrachloroethene (0.46 μg L1), compounds which are very commonly detected in urban runoff from most cities. The results of the VOC distribution showed that port activity was not the main source of VOCs along the Fortaleza Coast, but that the contribution from urban runoff seemed more significant.  相似文献   

4.
A new method for the speciation analysis of selenite (Se-IV), selenate (Se-VI), and selenocyanate (SeCN) is described and first results are presented on the distribution of these species in wastewater samples from a Brazilian oil refinery plant. The method is based on the ion chromatographic separation of these species followed by on-line detection of 77Se, 78Se, and 82Se using quadrupole inductively coupled plasma-mass spectrometry (ICPMS). The system employed consisted of a HPLC pump equipped with a manual syringe loading injector, and an anion exchange column (Metrosep A Supp1), the latter interfaced with the ICPMS via a concentric nebulizer–cyclonic spray chamber sample introduction device. Several eluents already described in the literature for the speciation analysis of inorganic selenium were tested, permitting in most cases a good separation of Se(IV) and Se(VI), however, resulting all in very long residence times (> 30 min) and associated peak broadening for the SeCN ion. This drawback could be effectively avoided by using as the mobile phase a solution of cyanuric acid (3 mmol L−1), modified with acetonitrile (2% v/v) and percchlorate acid (2.5 mmol L−1). Typical retention times (s) for the three analyte species were: selenite (210) < selenate (250) < selenocyanate (450). Repeatabilities in peak position were better than 1% and in peak area evaluation about 3%. Absolute limits of detection (in ng) for these species using an ELAN 5000 instrument and a 500-μL sample injection loop are 0.04, 0.05 and 0.09, respectively. No certified reference materials were available for this study, however, results on spiked wastewater samples showed acceptable recoveries (80–110%) and repeatabilities (RSD < 5%), thus validating this method for its intended purpose. Once optimized, the method was applied to wastewater samples from an oil refinery plant. In all samples until now analyzed, selenocyanate was by far the most abundant selenium species reaching concentrations of up to 90 μg L−1. Selenite was detected only in one sample and selenate could not identified in any of the samples analyzed. Total concentrations of selenium in most samples, assessed by hydride generation ICPMS and by solution nebulization inductively coupled plasma optical emission spectrometry (ICPOES), exceeded those obtained from speciation analysis, indicating the presence of other selenium species not observed by the here used methodology.  相似文献   

5.
Spectral interferences from phosphorus on the determination of selenium in biological tissue materials were not observed when a Zeeman-effect background correction was used with rhodium as a chemical modifier. A suppression effect on the selenium signal resulted when the concentration of phosphorus present was greater than 1.0 mg ml−1. Rhodium was found to be more effective than palladium in overcoming the phosphate interference. Analytical procedures for the direct determination of trace selenium in standard reference materials by graphite furnace atomic absorption spectrometry following sample dissolution in nitric acid and hydrogen peroxide using a microwave oven has been described. The results obtained agreed favourably with the certified values.  相似文献   

6.
Different nebulizer/expansion chamber combinations were evaluated to assess their performance for sample introduction in the direct coupling with an axial view inductively coupled plasma multielement spectrometer for on-line determination of As and Se species previously separated by ion exchange–high performance liquid chromatography. The column effluents were injected into the plasma without prior derivatization. The instrument operation software was adapted for data acquisition and processing to allow multi-wavelength recording of the transient chromatographic peaks. After optimization of the chromatographic operating conditions, separation of mixtures of inorganic As and Se species, and of inorganic and two organic As species (monomethylarsonic and dimethylarsinic acids), was achieved with excellent resolution. Species discrimination from mixtures of As and Se oxyanions was further improved by the simultaneous element detection at specific analytical wavelengths. Three nebulizers and three spray chambers, employed in seven combinations, were tested as interfaces. Concentric nebulizers associated to a glass cyclonic chamber appear most suitable regarding sensitivity and signal to noise ratio. Measured element detection limits (3 σ) were around 10 ng ml 1 for all the species considered, making the method a viable alternative to similar procedures that employ volatile hydride generation previous to sample injection into the plasma. Analytical recoveries both for inorganic and organic species ranged between 92 and 107%. The method was demonstrated to be apt for the analysis of surface waters potentially subjected to natural contamination with arsenic.  相似文献   

7.
Porous silica–zirconia membranes were fabricated by the sol–gel techniques to study their stability against water and the pervaporation performance of aqueous solutions of organic solvents. Zirconia (10–70 mol%) was added to silica to obtain silica–zirconia composite membranes by firing at 400–500 °C for pervaporation tests with organic solvent/water mixtures, such as iso-propyl alcohol (IPA)/water and tetrahydrofuran (THF)/water mixtures at their normal boiling points.The membrane coatings have been done effectively by the hot-coating methods proposed previously. Boiling water treatments introduced in the coating processes have made the membranes quite stable even in the high water concentration region of aqueous organic solutions at their normal boiling points. Zirconia contents larger than about 40 mol% have made the silica–zirconia membranes quite stable. The membranes of zirconia contents less than about 30 mol% were found not stable in a dilute aqueous solution of IPA. The membranes fabricated by the conventional dip-coating methods with slow drying were not stable against water because of the probable segregation of silica and/or silica-rich phases during drying.The membranes fired at lower temperature (400 °C) gave a higher water flux of around 500 mol m−2 h−1 (9 kg m−2 h−1) with a separation factor larger than 1500 at 10 wt.% of water in the boiling feed of IPA/water mixture, for example.  相似文献   

8.
This work investigates the potential of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers, which could be interesting in view of the current regulations restricting the use of organobrominated compounds. The method developed is based on the addition of Ca (300 μg) and Pd (30 μg) to favor the formation of CaBr, which is monitored at the main molecular “lines” (rotational spectra) found in the vicinity of 625.315 nm.It was found that accurate results could be obtained for all the samples investigated (polyethylene, polypropylene and acrylonitrile butadiene styrene certified reference materials) using any of the lines studied and constructing the calibration curve with aqueous standards. Furthermore, the combined use of the main four CaBr lines available in the spectral area simultaneously monitored permits to easily expand the linear range up to 2000 ng, provides a limit of detection of 1.8 ng (1.8 μg g 1 for a mass of 1 mg) and further improves precision to values between 3–7% RSD. Overall, the method proposed seems suited for the fast and simple control of these types of samples (approximately 10 min for sample are required), circumventing the traditional problems associated with sample digestion (e.g., losses of volatile compounds), and providing sufficient sensitivity to easily comply with regulations.  相似文献   

9.
《Microchemical Journal》2007,85(1-2):10-13
In this paper, a sensitive flow injection chemiluminescence system luminol–myoglobin was described for determining femtogram nitrite. Nitrite bound myoglobin producing the ferric heme nitrite complexes, which catalyzed the electron transfer of luminol to myoglobin leading to fast chemiluminescence. The chemiluminescence intensity in the presence of nitrite was remarkably enhanced compared with that in the absence of it. Under the optimum reaction conditions the chemiluminescence increment produced was proportional to the concentration of nitrite in the range of 0.05 pg ml 1–1.0 ng ml 1 (R2 = 0.9991), with a detection limit (3σ) of 20.0 fg ml 1. At the flow rate of 2.0 ml min 1, the whole process including sampling and washing could be completed in 0.5 min offering the sampling efficiency of 120 h 1 accordingly, and the relative standard deviation (RSD) was less than 2.60% (n = 5). It was satisfactory for the application to determine nitrite in human urine samples, and the possible mechanism was proposed.  相似文献   

10.
The coupling of a High-Temperature Liquid Chromatography system (HTLC) with an Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) is reported for the first time. This hyphenation combines the separation efficiency of HTLC with the detection power of a simultaneous ICP-AES system and allows the combined determination of organic compound and metals. The effluents of the column were introduced into the spectrometer and the chromatograms for organic compounds were obtained by plotting the carbon emission signal at a characteristic wavelength versus time. As regards metals, they were determined by injecting a small sample volume between the exit of the column and the spectrometer and taking the emission intensity for each one of the elements simultaneously. Provided that in HTLC the effluents emerged at high temperatures, an aerosol was easily generated at the exit of the column. Therefore, the use of a pneumatic nebulizer as a component of a liquid sample introduction system in the ICP-AES could be avoided, thus reducing the peak dispersion and limits of detection by a factor of two. The fact that a hot liquid stream was nebulized made it necessary to use a thermostated spray chamber so as to avoid the plasma cooling as a cause of the excessive mass of solvent delivered to it. Due to the similarity in sample introduction, an Evaporative Light Scattering Detector (ELSD) was taken as a reference. Comparatively speaking, limits of detection were of the same order for both HTLC–ICP-AES and HTLC–ELSD, although the latter provided better results for some compounds (from 10 to 20 mg L?1 and 5–10 mg L?1, respectively). In contrast, the dynamic range for the new hyphenation was about two orders of magnitude wider. More importantly, HTLC–ICP-AES provided information about the content of both organic (glucose, sucrose, maltose and lactose at concentrations from roughly 10 to 400 mg L?1) as well as inorganic (magnesium, calcium, sodium, zinc, potassium and boron at levels included within the 6–3000 mg L?1) species. The new development was applied to the analysis of several food samples such as milk, cream, candy, isotonic beverage and beer. Good correlation was found between the data obtained for the two detectors used (i.e., ICP-AES and ELSD).  相似文献   

11.
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen–oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g 1 in procedures i–v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g 1 in procedures i–iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50–110 ng g 1 in crude oil, < 0.4–6 ng g 1 in gasoline, < 0.5–2 ng g 1 in atmospheric oil, < 6–100 ng g 1 in heavy vacuum oil and 140–300 ng g 1 in distillation residue.  相似文献   

12.
A flow injection on-line displacement solid-phase extraction protocol was employed to minimize mass interferences with determination of palladium by inductively coupled plasma mass spectrometry (ICP-MS). The developed method involved in on-line complexing of Ag+ with pyrrolidine dithiocarbamate (PDC), presorption of the resultant Ag–PDC onto a microcolumn packed with the cigarette filter, displacement sorption of Pd2+ through loading the sample solution onto the microcolumn due to on-line displacement reaction between Pd2+ and the presorbed Ag–PDC, elution of the retained Pd2+ with 50 μL of ethanol for on-line ICP-MS detection. Interferences from co-existing heavy metal ions with lower stability of their PDC complexes relative to Ag–PDC were minimized/eliminated. No interferences from 5 mg L 1 Zn and 3 mg L 1 Pb for 104Pd, 0.4 mg L 1 Cu for 105Pd, 6 mg L 1 Zn and 2 mg L 1 Cd for 106Pd, 6 mg L 1 Zn and 3 mg L 1 Cd for 108Pd, and 2 mg L 1 Cd for 110Pd were observed for the determination of 100 ng L 1 Pd. The enhancement factors of 71–75, sample throughput of 23 samples h 1 and detection limits of 2.8–3.5 ng L 1 were achieved with the consumption of 3.0 mL of sample solution. The precision (RSD) for eleven replicate determinations of Pd at the 100 ng L 1 level was 1.8–2.7%. The developed method was applied to the determination of palladium in rock samples.  相似文献   

13.
A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l 1 in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l 1 for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40–50 different solutions were prepared and measured in a period of time shorter than 6–7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.  相似文献   

14.
In this work the effect of relative humidity (RH) and formaldehyde (H2CO) concentration on Pb corrosion was investigated; a possible synergism between the aldehyde and CO2 effects was also considered. Triphasic aqueous salt solutions were used to produce 54% and 75% RH that, together with the 100% RH condition, were combined with 0, 0.62, 55 and 2.0 102 mg m−3 formaldehyde concentrations to compose the wanted environments.The results pointed to the conclusion that even at low RH (54%) formates are produced at the metal surface as a consequence of formaldehyde adsorption, indicating that the aldehyde has an active role in Pb corrosion; formates were also observed at relatively low H2CO concentration (0.62 mg m−3). No synergism between formaldehyde and carbon dioxide were observed as demonstrated by the Raman images from a corroded Pb coupon, showing that formate and carbonate contributions to the corrosion products were not spatially related.When compared to other volatile organic compounds (VOCs), formaldehyde harmful effect towards metals is frequently underestimated and the results here reported clearly indicate that, even at low RH, its concentration in indoor environments, where it tends to be produced and accumulated, has to be carefully controlled.  相似文献   

15.
A thin film hafnium-tantalum combinatorial library with a compositional spread of over 70 at.% was used for electrochemical dissolution experiments in nitric acid. Surface microstructure analysis and crystallographic characterization of individual Hf–Ta alloys confirmed a hexagonal to tetragonal transition from pure Hf to pure Ta accompanied by a change in the surface grain structure. A flow-type scanning droplet cell microscope coupled to downstream analytics was used for the quantification of Hf and Ta dissolution rates along the entire compositional spread. Potentiostatically applying 3 V vs. SHE for 120 s for an electrolyte flow of 0.46 ml min 1 resulted in dissolution rates of pure Hf and pure Ta in the ng s 1 cm 2 and pg s 1 cm 2 range, respectively. For both species, the average dissolution rate was independent of the compositional gradient, indicating a dissolution enhancement of minor species. A decrease in their activation energy for dissolution triggered by a surface energy modification was the reason for the observed behavior.  相似文献   

16.
Using a solid phase extraction mini-column home-made from a neutral extractant Cyanex 923, inorganic Hg could be on-line preconcentrated and simultaneously separated from methyl mercury. The preconcentrated Hg (II) was then eluted with 10% HNO3 and subsequently reduced by NaBH4 to form Hg vapor before determination by cold vapor atomic absorption spectrometry (CVAAS). Optimal conditions for and interferences on the Hg preconcentration and measurement were at 1% HCl, for a 25 mL sample uptake volume and a 10 mL min 1 sample loading rate. The detection limit was 0.2 ng L 1 and much lower than that of conventional method (around 15.8 ng L 1). The relative standard deviation (RSD) is 1.8% for measurements of 40 ng L 1 of Hg and the linear working curve is from 20 to 2000 ng L 1 (with a correlation coefficient of 0.9996). The method was applied in determination of inorganic Hg in city lake and deep well water (from Changchun, Jilin, China), and recovery test results for both samples were satisfactory.  相似文献   

17.
18.
A simple and inexpensive laboratory-built flow injection vapor generation system coupled to atomic absorption spectrometry (FI-VG AAS) for inorganic and total mercury determination has been developed. It is based on the vapor generation of total mercury and a selective detection of Hg2 + or total mercury by varying the temperature of the measurement cell. Only the inorganic mercury is measured when the quartz cell is at room temperature, and when the cell is heated to 650 °C or higher the total Hg concentration is measured. The organic Hg concentration in the sample is calculated from the difference between the total Hg and Hg2 + concentrations. Parameters such as the type of acid (HCl or HNO3) and its concentration, reductant (NaBH4) concentration, carrier solution (HCl) flow rate, carrier gas flow rate, sample volume and quartz cell temperature, which influence FI-VG AAS system performance, were systematically investigated. The optimized conditions for Hg2 + and total Hg determinations were: 1.0 mol l 1 HCl as carrier solution, carrier flow rate of 3.5 ml min 1, 0.1% (m/v) NaBH4, reductant flow rate of 1.0 ml min 1 and carrier gas flow rate of 200 ml min 1. The relative standard deviation (RSD) is lower than 5.0% for a 1.0 μg l 1 Hg solution and the limit of quantification (LOQ, 10 s) is 55 ng g 1. Certified samples of dogfish muscle (DORM-1 and DORM-2) and non-certified fish samples were analyzed, using a 6.0 mol l 1 HCl solution for analyte extraction. The Hg2 + and CH3Hg+ concentrations found were in agreement with certified ones.  相似文献   

19.
The bioelectrochemical oxidation of two polyaromatic hydrocarbons (PAH): anthracene (ANT) and pyrene (PYR), using horseradish peroxidase (HRP) resulting in the synthesis of photoactive polyaromatic quinones in organic media was studied. The electrochemical generation of hydrogen peroxide was compared with its direct addition in concentrations of up to 0.0012 mol L−1. In addition, three different chemical redox mediators were evaluated: ABTS, thionin and ortho-aminophenol. In a reaction medium containing 30% acetone and ABTS as mediator with a molar ratio mediator/PAH of 1:10, HRP attained the highest level of oxidation of PAH (1 × 10−3 mol L−1): ANT (94%) and PYR (91%), producing 9,10-anthraquinone and mainly 1,2 and 4,5-pyrenequinones, respectively.  相似文献   

20.
Hollow fiber supported liquid membrane microextraction, a relatively new sample preparation technique, has attracted much interest in the field of environmental analysis. In the current study, a novel method based on hollow-fiber liquid-phase microextraction and flame atomic absorption spectrometry (FAAS) for the measurement of copper ion in aqueous samples is described. Hollow-fiber liquid-phase microextraction conditions such as the type of extraction solvent, pH, the stirring rate, and the amounts of chelating agents, sample volume, and the extraction time were investigated. Under the optimized conditions, the linear range was found to be 0.01–15 μg ml?1 for copper ion, and the limit of detection to be 0.004 μg ml?1. Tap water and surface water samples collected from Mashhad, Iran and Dorongar river; Khorasan, Iran, respectively, were successfully analyzed using the proposed method. The recoveries from the spiked water samples were 72.4% and 105%, respectively; and the relative standard deviation (RSD) at the 2 μg ml?1 level was 6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号