首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Breast cancer (BC) is the most common malignant tumor in women worldwide, which seriously threatens women’s physical and mental health. In recent years, photodynamic therapy (PDT) has shown significant advantages in cancer treatment. PDT involves activating photosensitizers with appropriate wavelengths of light, producing transient levels of reactive oxygen species (ROS). Compared with free photosensitizers, the use of nanoparticles in PDT shows great advantages in terms of solubility, early degradation, and biodistribution, as well as more effective intercellular penetration and targeted cancer cell uptake. Under the current circumstances, researchers have made promising efforts to develop nanocarrier photosensitizers. Reasonably designed photosensitizer (PS) nanoparticles can be achieved through non-covalent (self-aggregation, interfacial deposition, interfacial polymerization or core-shell embedding and physical adsorption) or covalent (chemical immobilization or coupling) processes and accumulate in certain tumors through passive and/or active targeting. These PS loading methods provide chemical and physical stability to the PS payload. Among nanoparticles, metal nanoparticles have the advantages of high stability, adjustable size, optical properties, and easy surface functionalization, making them more biocompatible in biological applications. In this review, we summarize the current development and application status of photodynamic therapy for breast cancer, especially the latest developments in the application of metal nanocarriers in breast cancer PDT, and highlight some of the recent synergistic therapies, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results.  相似文献   

2.
The co‐delivery of photosensitizers with prodrugs sensitive to reactive oxygen species (ROS) for light‐triggered ROS generation and cascaded prodrug activation has drawn tremendous attention. However, the absence of a feasible method to deliver the two components at a precise ratio has impaired the application potential. Herein, we report an efficient method to produce a nanosized platform for the delivery of an optimized ratio of the two components by the means of host–guest strategy for maximizing the combination therapy efficacy of cancer treatment. The key features of this host–guest strategy for the combination therapy are that the ratio between photosensitizer and ROS‐sensitive prodrug can be easily tuned, near‐infrared (NIR) irradiation can sensitize the photosensitizer and activate the paclitaxel prodrug for its release, and the accumulation process can be tracked by NIR imaging to maximize the efficacy of photodynamic and chemotherapy.  相似文献   

3.
《化学:亚洲杂志》2017,12(14):1700-1703
Here we show that “off‐on” type of photodynamic therapy agents could be developed using hollow mesoporous silica nanoparticles (HMSNPs), which can be used not only for enhancing delivery of photosensitizers to cancer cells but also for enabling switchable optical properties of the photosensitizers. Fluorescence and singlet oxygen generation of the photosensitizer‐loaded HMSNP are turned off in its native state. In vitro cell studies showed that this HMSNP‐based “off‐on” agent may have potential utility in selective fluorescence detection and photodynamic therapy of cancers.  相似文献   

4.
Photodynamic therapy (PDT) has extraordinary promise for the treatment of many cancers. However, its clinical progress is impaired by the intrinsic hypoxic tumor microenvironment that limits PDT efficacy and the safety concern associated with biological specificity of photosensitizers or vehicles. Now it is demonstrated that rationally designed DNA nanosponges can load and delivery photosensitizer effectively, target tumor precisely, and relieve hypoxia‐associated resistance remarkably to enhance the efficacy of PDT. Specifically, the approach exhibits a facile assembly process, provides programmable and versatile nanocarriers, and enables robust in vitro and in vivo anti‐cancer efficacy with excellent biosafety. These findings represent a practical and safe approach by designer DNA nanoassemblies to combat cancer effectively and suggest a powerful strategy for broad biomedical application of PDT.  相似文献   

5.
Two‐photon photodynamic therapy (2P‐PDT) is a promising noninvasive treatment of cancers and other diseases with three‐dimensional selectivity and deep penetration. However, clinical applications of 2P‐PDT are limited by small two‐photon absorption (TPA) cross sections of traditional photosensitizers. The development of folate receptor targeted nano‐photosensitizers based on conjugated polymers is described. In these nano‐photosensitizers, poly{9,9‐bis[6′′‐(bromohexyl)fluorene‐2,7‐ylenevinylene]‐coalt‐1,4‐(2,5‐dicyanophenylene)}, which is a conjugated polymer with a large TPA cross section, acts as a two‐photon light‐harvesting material to significantly enhance the two‐photon properties of the doped photosensitizer tetraphenylporphyrin (TPP) through energy transfer. These nanoparticles displayed up to 1020‐fold enhancement in two‐photon excitation emission and about 870‐fold enhancement in the two‐photon‐induced singlet oxygen generation capability of TPP. Surface‐functionalized folic acid groups make these nanoparticles highly selective in targeting and killing KB cancer cells over NIH/3T3 normal cells. The 2P‐PDT activity of these nanoparticles was significantly improved, potentially up to about 1000 times, as implied by the enhancement factors of two‐photon excitation emission and singlet oxygen generation. These nanoparticles could act as novel two‐photon nano‐photosensitizers with combined advantages of low dark cytotoxicity, targeted 2P‐PDT with high selectivity, and simultaneous two‐photon fluorescence imaging capability; these are all required for ideal two‐photon photosensitizers.  相似文献   

6.
Synergistic chemotherapy of doxorubicin and curcumin (CUR) is an important strategy for cancer therapy to compensate for the single drug chemotherapy. Programmed and precise delivery of drugs plays a crucial role for optimizing the mode of administration and revealing the mechanism of synergistic chemotherapy. Herein, multiplex fluorescence imaging-guided programmed delivery of doxorubicin and CUR was achieved by a nanoparticles/hydrogel system for synergistic chemotherapy. CUR-loaded nanoparticles and doxorubicin were co-loaded into hydrogel to construct a synergistic chemotherapy drug delivery system. The hydrogel-nanoparticles combined system can effectively achieve the programmed delivery of hydrophilic drug and hydrophobic drug for the synergistic chemotherapy. They exerted the on-demand spatiotemporal delivery of doxorubicin and CUR. The combined chemotherapy system significantly inhibited the tumor growth compared to single therapy. Moreover, the programmed delivery of doxorubicin and CUR was visualized precisely based on their self-fluorescence instead of extra fluorescent tags at the cellular level and in vivo lever using multiplex fluorescence imaging technology. It afforded an imaging guidance for the controllable synergistic chemotherapy based on programmed delivery.  相似文献   

7.
Ren  Fei  Li  Zeshun  Li  Kai  Zheng  Xiaoyan  Shi  Jianbing  Zhang  Chen  Guo  Heng  Tong  Bin  Xi  Lei  Cai  Zhengxu  Dong  Yuping 《中国科学:化学(英文版)》2021,64(9):1530-1539
Photothermal therapy(PTT) is emerging as an effective treatment for superficial carcinoma. A key challenge to the effectiveness of PTT is to develop photosensitizers with high photothermal conversion efficiency. Aiming to address this challenge, we develop a series of multi-arylpyrrole derivatives with different donors that contain different multi-rotor structures to explore highly efficient PTT photosensitizers. Among these multi-arylpyrrole derivatives, MAP4-FE nanoparticles with a small size of their donor groups and better-donating ability exhibit a high photothermal conversion efficiency(up to 72%) when they are encapsulated by an amphiphilic polymer. As a result, the MAP4-FE nanoparticles have shown satisfactory PTTeffects on in vivo tumor eradication under the guidance of photoacoustic signals. The findings of this study provide significant insights for the development of high-efficiency PTT photosensitizers for cancer treatment by making full use of the nonradiative decay of small size donors as rotors.  相似文献   

8.
Photodynamic therapy (PDT) has long been shown to be a powerful therapeutic modality for cancer. However, PDT is undiversified and has become stereotyped in recent years. Exploration of distinctive PDT methods is thus highly in demand but remains a severe challenge. Herein, an unprecedented 1+1+1>3 synergistic strategy is proposed and validated for the first time. Three homologous luminogens with aggregation-induced emission (AIE) characteristics were rationally designed based on a simple backbone. Through slight structural tuning, these far-red/near-infrared AIE luminogens are capable of specifically anchoring to mitochondria, cell membrane, and lysosome, and effectively generating reactive oxygen species (ROS). Notably, biological studies demonstrated combined usage of three AIE photosensitizers gives multiple ROS sources simultaneously derived from several organelles, which gives superior therapeutic effect than that from a single organelle at the same photosensitizers concentration. This strategy is conceptually and operationally simple, providing an innovative approach and renewed awareness of improving therapeutic effect through three-pronged PDT.  相似文献   

9.
Photodynamic therapy (PDT) has long been shown to be a powerful therapeutic modality for cancer. However, PDT is undiversified and has become stereotyped in recent years. Exploration of distinctive PDT methods is thus highly in demand but remains a severe challenge. Herein, an unprecedented 1+1+1>3 synergistic strategy is proposed and validated for the first time. Three homologous luminogens with aggregation‐induced emission (AIE) characteristics were rationally designed based on a simple backbone. Through slight structural tuning, these far‐red/near‐infrared AIE luminogens are capable of specifically anchoring to mitochondria, cell membrane, and lysosome, and effectively generating reactive oxygen species (ROS). Notably, biological studies demonstrated combined usage of three AIE photosensitizers gives multiple ROS sources simultaneously derived from several organelles, which gives superior therapeutic effect than that from a single organelle at the same photosensitizers concentration. This strategy is conceptually and operationally simple, providing an innovative approach and renewed awareness of improving therapeutic effect through three‐pronged PDT.  相似文献   

10.
Regulation of physio-chemical properties and reaction activities via noncovalent methodology has become one of increasingly significant topics in supramolecular chemistry and showed inventive applications in miscellaneous fields. Herein, we demonstrate that sulfonated crown ether can form very stable host-guest complexes with a series of push-pull-type photosensitizers, eventually leading to the dramatic fluorescence enhancement in visible and near-infrared regions. Meanwhile, severe suppression in singlet oxygen (1O2) production is found, mainly due to the higher energy barriers between the excited single and triple states upon host-guest complexation. Moreover, such complexation-induced tuneable 1O2 generation systems has been utilized in adjusting the photochemical oxidation reactions of polycyclic aromatic hydrocarbons (anthracene) and sulfides ((methylthio)benzene) in water. This supramolecularly controlled photooxidation based on the selective molecular binding of crown ether with photosensitizers may provide a feasible and applicable strategy for monitoring and modulating many photocatalysis processes in aqueous phase.  相似文献   

11.
《中国化学快报》2021,32(12):3903-3906
A variety of nano-engineered photosensitizers have been developed for photodynamic therapy (PDT) of cancer diseases. However, traditional nano-engineering methods usually cannot avoid drug leakage and premature release, and have disadvantages such as low drug load and inaccurate release. The self-assembly strategy based on amphiphilic peptides has been considered to be more attractive nano-engineering method. Here we developed novel acid-activatable self-assembled nanophotosensitizers based on an amphiphilic peptide derivative. The peptide derivative was synthesized from a fluorescein molecule with thermally activated delayed fluorescence (TADF). The self-assembled nanophotosensitizers can specifically enter the tumor cells and disassemble inside lysosomes companied with “turn-on” fluorescence and photodynamic therapy effect. Such smart nanophotosensitizers will open new opportunities for cancer theranostics.  相似文献   

12.
Phototherapies including photodynamic therapy(PDT) and photothermal therapy(PTT) are the most promising and non-invasive cancer treatments. However, the efficacy of mono-therapy of PDT or PTT is often limited by the phototherapeutic defects such as low light penetration depth of photosensitizers and insufficiency of photothermal agents. Peroxynitrite(ONOO~-) has been proved to be an efficient oxidizing and nitrating agent that involves in various physiological and pathological processes. Therefore, ONOO~-produced in tumor site could be an effective treatment in cancer therapy. Herein, a novel cyanine dye-based(Cy7) polymer nanoplatform is developed for enhanced phototherapy by in situ producing ONOO~-. The Cy7 units in the nanoparticles can not only be served as the photosensitizer to produce reactive oxygen species(ROS) including singlet oxygen and superoxide anion for PDT, but also be used as a heat source for PTT and the release of NO gas from N-nitrosated napthalimide(NORM) at the same time. Since NO can react quickly with superoxide anion to generate ONOO~-, the enhanced phototherapy could be achieved by in situ ONOO~-produced by PCy7-NO upon exposure to the near infrared(NIR) light. Therefore, the NIRtriggered Cy7-based nanoplatform for ONOO~--enhanced phototherapy may provide a new perspective in cancer therapy.  相似文献   

13.
Be my guest: A supramolecular host-guest interaction is utilized for highly efficient bioorthogonal labeling of cellular targets. Antibodies labeled with a cyclodextrin host molecule bind to adamantane-labeled magnetofluorescent nanoparticles (see picture) and provide an amplifiable strategy for biomarker detection that can be adapted to different diagnostic techniques such as molecular profiling or magnetic cell sorting.  相似文献   

14.
Photodynamic therapy (PDT) is a promising new treatment modality for several diseases, most notably cancer. In PDT, light, O2, and a photosensitizing drug are combined to produce a selective therapeutic effect. Lately, there has been active research on new photosensitizer candidates, because the most commonly used porphyrin photosensitizers are far from ideal with respect to PDT. Finding a suitable photosensitizer is crucial in improving the efficacy of PDT. Recent synthetic activity has created such a great number of potential photosensitizers for PDT that it is difficult to decide which ones are suitable for which pathological conditions, such as various cancer species. To facilitate the choice of photosensitizer, this review presents a thorough survey of the photophysical and chemical properties of the developed tetrapyrrolic photosensitizers. Special attention is paid to the singlet-oxygen yield (PhiDelta) of each photosensitizer, because it is one of the most important photodynamic parameters in PDT. Also, in the survey, emphasis is placed on those photosensitizers that can easily be prepared by partial syntheses starting from the abundant natural precursors, protoheme and the chlorophylls. Such emphasis is justified by economical and environmental reasons. Several of the most promising photosensitizer candidates are chlorins or bacteriochlorins. Consequently, chlorophyll-related chlorins, whose PhiDelta have been determined, are discussed in detail as potential photosensitizers for PDT. Finally, PDT is briefly discussed as a treatment modality, including its clinical aspects, light sources, targeting of the photosensitizer, and opportunities.  相似文献   

15.
The efficiency of the intersystem crossing process can be improved by reducing the energy gap between the singlet and triplet excited states (ΔE ST), which offers the opportunity to improve the yield of the triplet excited state. Herein, we demonstrate that modulation of the excited states is also an effective strategy to regulate the singlet oxygen generation of photosensitizers. Based on our previous studies that photosensitizers with aggregation-induced emission characteristics (AIE) showed enhanced fluorescence and efficient singlet oxygen production in the aggregated state, a series of AIE fluorogens such as TPDC, TPPDC and PPDC were synthesized, which showed ΔE ST values of 0.48, 0.35 and 0.27 eV, respectively. A detailed study revealed that PPDC exhibited the highest singlet oxygen efficiency (0.89) as nanoaggregates, while TPDC exhibited the lowest efficiency (0.28), inversely correlated with their ΔE ST values. Due to their similar optical properties, TPDC and PPDC were further encapsulated into nanoparticles (NPs). Subsequent surface modification with cell penetrating peptide (TAT) yielded TAT–TPDC NPs and TAT–PPDC NPs. As a result of the stronger singlet oxygen generation, TAT–PPDC NPs showed enhanced cancer cell ablation as compared to TAT–TPDC NPs. Fine-tuning of the singlet-triplet energy gap is thus proven to be an effective new strategy to generate efficient photosensitizers for photodynamic therapy.  相似文献   

16.
许友  任凯丽  徐蓉 《催化学报》2021,42(8):1370-1378
传统化石能源的大量消耗使得能源短缺和环境污染等问题日益严峻.社会的可持续发展需要进行能源结构调整,寻求清洁、可再生的替代能源已迫在眉睫.氢能作为一种可再生能源,其热值高,燃烧产物无污染,是未来最理想的能源形式之一.水裂解制氢是公认的未来清洁制氢的一种有效途径.然而,无论是电催化或光催化水裂解反应,析氧反应都是关键的半反应.因其复杂的四电子过程导致动力学缓慢,使得析氧半反应成为水裂解反应的瓶颈.长久以来,贵金属Ir和Ru基材料是被广泛研究的高活性的析氧催化剂.然而高成本和低储量极大地限制了它们的大规模工业化应用.因此,开发高效、储量丰富的析氧催化剂,意义重大但仍充满挑战性.本文考察了一种简便而有效的合成策略,在碱性水溶液条件下,成功实现将一系列Fe基金属有机框架(MOF)前驱物原位转化为无定形Fe基双金属氢氧化物纳米结构.这些由MOF前驱物转化得到的氢氧化物纳米结构保留了前驱体纳米棒的宏观形貌,由许多超细的无定形纳米颗粒(平均粒径小于10 nm)构成,在催化反应中可以提供丰富的催化活性位,相邻的纳米颗粒之间紧密接触,有利于电子在催化活性位之间传递.以玻碳电极作为基底,通过组分优化得到的NiFe-OH-0.75催化剂样品在电催化析氧反应中仅需270 mV的过电位便可达到10 mA cm-2的电流密度,Tafel斜率为39 mV dec-1.将催化剂负载到三维泡沫镍基底上时,由于电极基底导电性提升以及传质增加,在10 mA cm?2的电流密度所需的过电位可以降低到235 mV,Tafel斜率为37 mV dec?1,并且表现出较好的稳定性.同时,本文进一步证实这些无定形氢氧化物可以用作助催化剂,与合适的光敏剂结合,实现有效的光催化水氧化反应.在KH2PO4-K2HPO4缓冲溶液(pH=9)体系中,以[Ru(2,2’-bipyridine)3]Cl2为光敏剂,Na2S2O8为电子受体,由CoFe-MIL-0.75前驱体转化所得到的CoFe-OH-0.75助催化剂表现出更优越的光催化产氧性能,产氧效率可达59.6%.本文结果可以为其他基于MOF及其相关衍生材料的制备提供新思路.  相似文献   

17.
Hydrophobic photosensitizers greatly affect cell permeability and enrichment in tumors, but they cannot be used directly for clinical applications because they always aggregate in water, preventing their circulation in the blood and accumulation in tumor cells. As a result, amphiphilic photosensitizers are highly desirable. Although nanomaterial-based photosensitizers can solve water solubility, they have the disadvantages of complicated operation, poor reproducibility, low drug loading, and poor stability. In this work, an efficient synthesis strategy is proposed that converts small molecules into nanoparticles in 100 % aqueous solution by molecular assembly without the addition of any foreign species. Three photosensitizers with triphenylphosphine units and ethylene glycol chains of different lengths, TPP−PPh3, TPP−PPh3−2PEG and TPP−PPh3−4PEG, were synthesized to improve amphiphilicity. Of the three photosensitizers, TPP−PPh3−4PEG is the most efficient (singlet oxygen yield: 0.89) for tumor photodynamic therapy not only because of its definite constituent, but also because its amphiphilic structure allows it to self-assemble in water.  相似文献   

18.
Photodynamic therapy (PDT) is a promising alternative treatment for different types of cancer due to its high selectivity, which prevents healthy tissues from being damaged. The use of nanomaterials in PDT has several advantages over classical photosensitizing agents, due to their unique properties and their capacity for functionalization. Especially interesting is the use of metallic nanoparticles, which are capable of absorbing electromagnetic radiation and either transferring this energy to oxygen molecules for the generation of reactive oxygen species (ROS) or dissipating it as heat. Although previous reports have demonstrated the capacity of Rh derivatives to serve as anti-tumor drugs, to the best of our knowledge there have been no studies on the potential use of small-sized Rh nanoparticles as photosensitizers in PDT. In this study, 5 nm Rh nanoparticles have been synthesized and their potential in PDT has been evaluated. The results show that treatment with Rh nanoparticles followed by NIR irradiation induces apoptosis in cancer cells through a p53-independent mechanism.  相似文献   

19.
Mesoporous silica nanoparticles (MSNs) are widely known for their versatile applications. One of the most extended is as drug delivery systems for the treatment of cancer and other diseases. This review compiles the most representative examples in the last years of functionalized MSNs as photosensitizer carriers for photodynamic therapy (PDT) against cancer. Several commercially available photosensitizers (PSs) demonstrated poor solubility in an aqueous medium and insufficient selectivity for cancer tissues. The tumor specificity of PSs is a key factor for enhancing the PDT effect and at the same time reducing side effects. The use of nanoparticles and particularly MSNs, in which PS is covalently anchored or physically embedded, can overcome these limitations. For that, PS-MSNs can be externally decorated with compounds of interest in order to act as an active target for certain cancer cells, demonstrating enhanced phototoxicity in vitro and in vivo. The objective of this review is to collect and compare different nanosystems based on PS-MSNs pointing out their advantages in PDT against diverse types of cancers.  相似文献   

20.
Noble metal nanoparticles attract growing interest owing to their high surface-to-volume ratio and unique optical, electric and catalytic properties. Fine-tuning these properties and broadening potential applications can be envisaged if nanoparticles are coupled to supramolecular cages that afford a highly tailorable inner environment as well as rich endo-/exo-functionalization. Due to rich chemical/physical properties of cages, integration of multiple host-guest interactions in confined cavities through endo-molecular design has been achieved. Such cages provide ideal confined templates for size-controlled synthesis of ultrafine nanoparticles with superior catalytic activities. Moreover, exo-functionalization of cages offers huge opportunities to couple with nanoparticles, generating cage-nanoparticle hybrids or hierarchical assemblies that combine merits of both. The present review provides recent advances in cage-mediated nanoparticle systems with synergistic effects and integrated functions, and demonstrates their applications in catalysis, sensing, chiral amplification, plasmonic switches, imaging and cell therapy. Finally, we highlight key challenges and identify emerging directions in the coming years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号