首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mn-based oxide-loaded porous carbon nanofiber anodes, exhibiting large reversible capacity, excellent capacity retention, and good rate capability, are fabricated by carbonizing electrospun polymer/Mn(CH3COO)2 composite nanofibers without adding any polymer binder or electronic conductor. The excellent electrochemical performance of these organic/inorganic nanocomposites is a result of the unique combinative effects of nano-sized Mn-based oxides and carbon matrices as well as the highly-developed porous composite nanofiber structure, which make them promising anode candidates for high-performance rechargeable lithium-ion batteries.  相似文献   

2.
《中国化学快报》2022,33(8):3925-3930
Due to its high theoretical capacity and appropriate potential platform, tin-based alloy materials are expected to be a competitive candidate for the next-generation high performance anodes of lithium-ion batteries. Nevertheless, the immense volume change during the lithium-ion insert process leads to severe disadvantages of structural damage and capacity fade, which limits its practical application. In this work, a three-dimensional (3D) multicore-shell hollow nanobox encapsulated by carbon layer is obtained via a three-step method of hydrothermal reaction, annealing and alkali etching. During the electrochemical reactions, the CoSn@void@C nanoboxes provide internal space to compensate the volumetric change upon the lithiation of Sn, while the inactive component of Co acts as chemical buffers to withstand the anisotropic expansion of nanoparticles. Owing to the above-mentioned advantages, the elaborated anode delivers an excellent capacity of 788.2 mAh/g at 100 mA/g after 100 cycles and considerable capacity retention of 519.2 mAh/g even at a high current density of 1 A/g after 300 cycles. The superior stability and high performance indicate its capability as promising anodes for lithium-ion batteries.  相似文献   

3.
Nanosized anatase titanium dioxide loaded porous carbon nanofibers (TiO2/PCNFs) were prepared from electrospun TiO(OAc)2/PAN/PMMA composite precursor fibers with different amount of PMMA porogen, which were sequentially heat-treated in different environments. Electrochemical measurement results show that these as-prepared TiO2/PCNFs present higher cyclic reversible capacity than the TiO2/CNFs counterpart (without PMMA porogen in its precursor fibers). Among the as-prepared TiO2/PCNFs samples, the representative TiO2/PCNFs (the mass ratio of PAN to PMMA is 3:1) exhibits the best high-rate performance with a high stable capacity retention about 200 mAhg− 1 at a current density as high as 800 mAg− 1. This novel TiO2/PCNFs composite material opens up a promising application in high-power lithium-ion batteries.  相似文献   

4.
Carbon coated magnetite (Fe3O4) core-shell nanorods were synthesized by a hydrothermal method using Fe2O3 nanorods as the precursor. Transmission electron spectroscopy (TEM) and high resolution TEM (HRTEM) analysis indicated that a carbon layer was coated on the surfaces of the individual Fe3O4 nanorods. The electrochemical properties of Fe3O4/carbon nanorods as anodes in lithium-ion cells were evaluated by cyclic voltammetry, ac impedance spectroscopy, and galvanostatic charge/discharge techniques. The as-prepared Fe3O4/C core-shell nanorods show an initial lithium storage capacity of 1120 mAh/g and a reversible capacity of 394 mAh/g after 100 cycles, demonstrating better performance than that of the commercial graphite anode material.  相似文献   

5.
Carbon nanosprings (CNSs) with spring diameter of ~140 nm, carbon ring diameter of ~100 nm and pitch distance of ~150 nm, synthesized by using a catalytic chemical vapor deposition technology, have been investigated for potential applicability in lithium batteries as anode materials. The electrochemical results demonstrate that the present CNSs are superior anode materials for rechargeable lithium-ion batteries with high-rate capabilities, as well as long-term cycling life. At a current density as high as 3 A g?1, CNSs can still deliver a reversible capacity of 160 mA h g?1, which is about six times larger than that of graphite and three times larger than that of multi-wall carbon nanotubes under the same current density. After hundreds of cycles, there is no significant capacity loss for CNSs at both low and high current densities. The much improved electrochemical performances could be attributed to the nanometer-sized building blocks as well as the unusual spring-like morphology.  相似文献   

6.
A sandwiched SiC@Pb@C nanocomposite was prepared through a simple ball-milling route and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The SiC@Pb@C nanocomposite exhibits a much improved reversible capacity and cycling life as compared with a bare Pb anode. A reversible volumetric capacity of >1,586 mAh cm−3 (207 mAh g−1) can be maintained after 600 cycles of charge and discharge in the potential interval between 0.005 and 1.0 V, which far exceeds those reported previously in the literature. The enhanced electrochemical performance is ascribed to the sandwiched structure in which nanosized Pb particles were anchored in between the rigid SiC core and the outer carbon shell, mitigating the damage done by the large volume change of the Pb interlayer during the alloying/dealloying process.  相似文献   

7.
Fan  Shihao  Xu  Yong  Li  Zhifeng  Wang  Chunxiang  Li  Hui  Chen  Jun 《Journal of Solid State Electrochemistry》2022,26(5):1241-1249
Journal of Solid State Electrochemistry - A column (5) aromatic compound was synthesized and its energy storage behaviors are investigated. The obtained column (5) aromatics is mainly disordered...  相似文献   

8.
Silicon nanowires (Si NWs) with and without carbon coating were successfully prepared by combination of chemical vapor deposition and thermal evaporation method. The morphologies, structures, and compositions of these nanomaterials were characterized in detail. Furthermore, the electrochemical performances of uncoated and carbon-coated Si NWs as anode materials were also studied. It shows that the carbon-coated Si NWs electrode has higher capacity, better cycle stability, and rate capability than the uncoated materials. For example, it delivers 3,702 and 3,082 mAh g−1 in the initial charge and discharge processes. When cycled between 0.02 and 2.0 V at a current density of 210 mA g−1, it yields a high coulombic efficiency of 83.2%. The discharge capacity still remains around 2,150 mAh g−1 after 30 cycles.  相似文献   

9.
Nano-sized caiboxylales Na2C7H3NO4 and Na2C6H2N2O4 were prepared and investigated as anode materials for lithium-ion batteries.Both carboxylates exhibit high reversible capacities around 190 mAh/g above a cut-off voltage of 0.8 V vs.Li+/Li.potentially improving the safety of the batteries.In addition,good rate performance and long cycle life of these carboxylates make them promising candidates as anode materials for lithium-ion batteries.  相似文献   

10.
A facile synthesis of Sn O2/corncob-derived activated carbon(CAC) composite was proposed,and the CAC used here has high specific surface area(over 3000 m2/g) and ample oxygen-containing functional groups.The microstructures and morphology as well as electrochemical performance of the Sn O2/CAC composites were investigated by X-ray diffraction,scanning electron microscopy,transmission electron microscopy and relevant electrochemical characterization. The results show that the mass ratios of Sn O2 to CAC have a significant effect on the structures and properties of the composites. The sample with 34% Sn O2 delivered a capacity of 879.8 m Ah/g in the first reversible cycle and maintained at 634.0 m Ah/g(72.1% retention of the initial reversible capacity) after 100 cycles at a current density of 200 m A/g. After 60 cycles at different specific currents from 200 to 2000 m A/g,the reversible specific capacity was still maintained at 632.8 m Ah/g at a current density of 200 m A/g. These results indicate that SnO 2/CAC can be a desirable alternative anode material for lithium ion batteries.  相似文献   

11.
This work describes a promising strategy for large-scale fabrication of silicon (Si) nanotubes. The process began with preparation of silica nanotubes using rod-like NiN2H4 as a template and the resulting silica nanotubes were then converted to Si nanotubes by a thermal reduction process assisted with magnesium powder. The electrochemical properties of Si nanotubes were investigated as anode of lithium-ion batteries. It was demonstrated that the as-developed Si nanotubes showed significantly improved rate capability and long-term cycling performance compared with commercial silicon meshes.  相似文献   

12.
13.
Journal of Solid State Electrochemistry - The electrochemical-grade natural graphite flake prices are increasing day by day. Reusing and recycling graphite materials from the spent lithium-ion...  相似文献   

14.
Journal of Solid State Electrochemistry - Modified Si nanoparticles were investigated as an anode material for lithium-ion batteries. The Si nanoparticle surfaces were modified with conductive,...  相似文献   

15.
Iron sulfide-embedded carbon microspheres were prepared via a solvothermal process and show high specific capacity and excellent high-rate performance as anode material for lithium-ion batteries.  相似文献   

16.
Integrated analysis of the cycling parameters (reversible specific capacity, Coulomb efficiency, irreversible loss of cycle capacity, accumulated irreversible capacity, and retention of reversible capacity) of synthetic graphite of MAG brand as an active material for the negative electrode of lithium-ion batteries was made.  相似文献   

17.
Graphene nanosheets (GNSs) were prepared from artificial graphite by oxidation, rapid expansion and ultrasonic treatment. The morphology, structure and electrochemical performance of GNSs as anode material for lithium-ion batteries were systematically investigated by high-resolution transmission electron microscope, scanning electron microscope, X-ray diffraction, Fourier transform infrared spectroscopy and a variety of electrochemical testing techniques. It was found that GNSs exhibited a relatively high reversible capacity of 672 mA h/g and fine cycle performance. The exchange current density of GNSs increased with the growth of cycle numbers exhibiting the peculiar electrochemical performance.  相似文献   

18.
Journal of Solid State Electrochemistry - Exploring the fast-charge anodes is crucial to meet the needs of lithium-ion battery (LIB) markets. Here, a hollow hexagonal mesoporous TiO2/carbon...  相似文献   

19.
The pristine CeVO4 and CeVO4/CNT hybrid composite nanostructured samples were facilely synthesized using a simple silicone oil-bath method.From the X-ray diffra...  相似文献   

20.
Journal of Solid State Electrochemistry - The morphology of Co-based zeolitic imidazolate framework is affected by the molar ratio of 2-methylimidazole and Co2+ used during the synthesis. In this...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号