首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrothermal vaporization (ETV) system useful for the analysis of solutions and slurries has been coupled with a sector-field inductively coupled plasma mass spectrometer (ICP–MS) equipped with an array detector. The ability of this instrument to record the transient signals produced for a number of analytes in ETV–ICP–MS is demonstrated. Detection limits for Mn, Fe, Co, Ni, Cu, Zn and Ga are in the range of 4–60 pg μL 1 for aqueous solutions and in the low μg g 1 range for the analysis of 10 mg mL 1 slurries of Al2O3 powders. The dynamic ranges measured for Fe, Cu and Ga spanned 3–5 orders of magnitude when the detector was operated in the low-gain mode and appear to be limited by the ETV system. Trace amounts of Fe, Cu and Ga could be directly determined in Al2O3 powders at the 2–270 μg g 1 level without the use of thermochemical reagents. The results well agree with literature values for Fe and Cu, whereas deviations of 50% at the 90 μg g 1 level for Ga were found.  相似文献   

2.
Bromine and iodine determination was performed in carbon nanotubes (CNTs) by inductively coupled plasma mass spectrometry (ICP-MS) after sample preparation using pyrohydrolysis. Samples of CNTs (up to 500 mg) were mixed with 750 mg of V2O5 and heated at 950 °C during 12.5 min in a quartz tube under water vapor and air. The main operational conditions of pyrohydrolysis (carrier gas, absorbing solution, heating time, sample mass and use of V2O5) were evaluated. Accuracy was evaluated using certified reference materials (CRM) with similar matrix and also by comparison of results obtained after digestion of samples by microwave-induced combustion (MIC) and determination by ICP-MS. Agreement with CRM values was higher than 97% for Br and better than 96% in comparison with reference values (MIC/ICP-MS) of Br and I in CNTs samples. The limit of detection of the method for Br and I determination by ICP-MS was 0.05 and 0.004 μg g? 1, respectively. Using a relatively simple and low cost pyrohydrolysis apparatus up to four samples can be processed per hour. The pyrohydrolysis sample preparation procedure is easy to be performed and provide a clean solution for analysis by ICP-MS, which is very attractive for Br and I control in CNTs.  相似文献   

3.
Air quality in the metropolitan region of Rio de Janeiro was evaluated by analysis of particulate matter (PM) in industrial (Santa Cruz) and rural (Seropédica) areas. Total suspended particles (TSP) and fine particulate matter (PM2.5) collected in filters over 24 h were quantified and their chemical composition determined. TSP exceeded Brazilian guidelines (80 μg m 3) in Santa Cruz, while PM2.5 levels exceeded the World Health Organization guidelines (10 μg m 3) in both locations. Filters were extracted with water and/or HNO3, and the concentrations of 20 elements, mostly metals, were determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP OES). Water soluble inorganic anions were determined by ion chromatography (IC). To estimate the proportion of these elements extracted, a certified reference material (NIST SRM 1648a, Urban Dust) was subjected to the same extraction process. Concordant results were obtained by ICP-MS and ICP OES for most elements. Some elements could not be quantified by both techniques; the most appropriate technique was chosen in each case. The urban dust was also analyzed by the United States Environmental Protection Agency (US EPA) method, which employs a combination of hydrochloric and nitric acids for the extraction, but higher extraction efficiency was obtained when only nitric acid was employed. The US EPA method gave better results only for Sb. In the PM samples, the elements found in the highest average concentrations by ICP were Zn and Al (3–6 μg m 3). The anions found in the highest average concentrations were SO42  in PM2.5 (2–4 μg m 3) and Cl in TSP (2–6 μg m 3). Principal component analysis (PCA) in combination with enrichment factors (EF) indicated industrial sources in PM2.5. Analysis of TSP suggested both anthropogenic and natural sources. In conclusion, this work contributes data on air quality, as well as a method for the analysis of PM samples by ICP-MS.  相似文献   

4.
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen–oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g 1 in procedures i–v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g 1 in procedures i–iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50–110 ng g 1 in crude oil, < 0.4–6 ng g 1 in gasoline, < 0.5–2 ng g 1 in atmospheric oil, < 6–100 ng g 1 in heavy vacuum oil and 140–300 ng g 1 in distillation residue.  相似文献   

5.
A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 °C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l 1. The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g 1 (Eu)–33.3 ng g 1(Nd) with the precisions of 4.1% (Yb)–10% (La) (c = 1 μg l 1, n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory.  相似文献   

6.
Activity coefficients for the (CaCl2 + amino acid + water) system were determined at a temperature of 298.15 K using ion-selective electrodes. The range of molalities of CaCl2 is (0.01 to 0.20) mol · kg?1, and that of amino acids is (0.10 to 0.40) mol · kg?1. The activity coefficients obtained from the Debye–Hückel extended equation and the Pitzer equation are in good agreement with each other. Results show that the interactions between CaCl2 and amino acid are controlled mainly by the electrostatic interactions (attraction). Gibbs free energy interaction parameters (gEA) and salting constants (kS) are positive, indicating that these amino acids are salted out by CaCl2. These results are discussed based on group additivity model.  相似文献   

7.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

8.
Carbon tetrachloride vapor as gaseous phase modifier in a graphite furnace electrothermal vaporizer (GFETV) converts heavy volatile analyte forms to volatile and medium volatile chlorides and produces aerosol carrier effect, the latter being a less generally recognized benefit. However, the possible increase of polyatomic interferences in inductively coupled plasma mass spectrometry (GFETV–ICP-MS) by chlorine and carbon containing species due to CCl4 vapor introduction has been discouraging with the use of low resolution, quadrupole type MS equipment. Being aware of this possible handicap, it was aimed at to investigate the feasibility of the use of this halogenating agent in ICP-MS with regard of possible hazards to the instrument, and also to explore the advantages under these specific conditions. With sample gas flow (inner gas flow) rate not higher than 900 ml min−1 Ar in the torch and 3 ml min−1 CCl4 vapor flow rate in the furnace, the long-term stability of the instrument was ensured and the following benefits by the halocarbon were observed. The non-linearity error (defined in the text) of the calibration curves (signal versus mass functions) with matrix-free solution standards was 30–70% without, and 1–5% with CCl4 vapor introduction, respectively, at 1 ng mass of Cu, Fe, Mn and Pb analytes. The sensitivity for these elements increased by 2–4-fold with chlorination, while the relative standard deviation (RSD) was essentially the same (2–5%) for the two cases in comparison. A vaporization temperature of 2650 °C was required for Cr in Ar atmosphere, while 2200 °C was sufficient in Ar + CCl4 atmosphere to attain complete vaporization. Improvements in linear response and sensitivity were the highest for this least volatile element. The pyrolytic graphite layer inside the graphite tube was protected by the halocarbon, and tube life time was further increased by using traces of hydrocarbon vapor in the external sheath gas of the graphite furnace. Details of the modification of the gas supply for HGA-600MS furnace and the design of the volatilization device are described.  相似文献   

9.
The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51V and 53Cr suffering from Cl interferences (51ClO+ and 53ClO+ respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51V and 53Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.  相似文献   

10.
Activity coefficients of CaCl2 in disaccharide {(maltose, lactose) + water} mixtures at 298.15 K were determined by cell potentials. The molalities of CaCl2 ranged from about 0.01 mol · kg?1 to 0.20 mol · kg?1, the mass fractions of maltose from 0.05 to 0.25, and those of lactose from 0.025 to 0.125. The cell potentials were analyzed by using the Debye–Hückel extended equation and the Pitzer equation. The activity coefficients obtained from the two theoretical models are in good agreement with each other. Gibbs free energy interaction parameters (gES) and salting constants (kS) were also obtained. These were discussed in terms of the stereo-chemistry of saccharide molecules and the structural interaction model.  相似文献   

11.
Solubility isotherms of the ternary system (LiCl + CaCl2 + H2O) were elaborately determined at T = (283.15 and 323.15) K. Several thermodynamic models were applied to represent the thermodynamic properties of this system. By comparing the predicted and experimental water activities in the ternary system, an empirical modified BET model was selected to represent the thermodynamic properties of this system. The solubility data determined in this work at T = (283.15 and 323.15) K, as well as those from the literature at other temperatures, were used for the model parameterization. A complete phase diagram of the ternary system was predicted over the temperature range from (273.15 to 323.15) K. Subsequently, the Gibbs free energy of formation of the solid phases CaCl2 · 4 H2O(s), CaCl2 · 2 H2O(s), LiCl · 2H2O(s), and LiCl · CaCl2 · 5H2O(s) was estimated and compared with the literature data.  相似文献   

12.
Conventional approaches for the analysis of platinum group elements (PGEs) in plant material suffer from sample digestion which results in sample dilution and therefore requires high sample intakes to maintain the sensitivity. The presented solid-sampling method avoids sample digestion while improving sensitivity when compared to digestion-based inductively coupled plasma optical emission spectrometry (ICP-OES) methods and allows the analysis of sample masses of 5 mg or less. Detection limits of 0.38 μg g 1, 0.14 μg g 1 and 0.13 μg g 1 were obtained for Pt, Pd and Rh, respectively using a sample intake of 5 mg. The reproducibility of the procedure ranged between 4.7% (Pd) relative standard deviation (RSD, n = 7) and 7.1% (Rh) RSD for 25 ng analytes. For quantification, aqueous standards were applied on paper filter strips and dried. Only the dried filters were introduced into the electrothermal vaporization unit. This approach successfully removed memory-effects observed during analysis of platinum which occurred only if liquid standards came into contact with the graphite material of the furnace. The presented method for overcoming the Pt-memory-effects may be of further interest for the analysis of other carbide-forming analytes as it does not require any technical modification of the graphite furnace (e.g., metal inlays, pyrolytic coating). Owing to lack of suitable certified reference materials, the proposed method was compared with conventional ICP-OES analysis of digested samples and a good agreement was obtained. As a result of the low sample consumption, it was possible to determine the spatial distribution of PGEs within a single plant. Significant differences in PGE concentrations were observed between the shoots (stem, leaves) and the roots. Pd was mainly found in the roots, whereas Pt and Rh were also found in higher concentrations in the shoots.  相似文献   

13.
The characteristics of infra red femtosecond laser-induced aerosols are studied for monazite (LREE, Th(PO4)) ablation and correlations are established with inductively coupled plasma-mass spectrometry (ICP-MS) signals. Critical parameters are tested within wide ranges of values in order to cover the usual laser ablation -ICP-MS analysis conditions: pulse energy (0.15 < E0 < 1 mJ/pulse), pulse width (60 < τ < 3000 fs), ablation time (t  10 min) and transport length (l  6.3 m). Transmission electron microscopy reveals that aerosols are made of agglomerates of ~ 10 nm particles and 20–300 nm phosphorus depleted condensed spherical particles. These structures are not affected by any laser ablation parameter. Particle counting is performed using electronic low pressure impaction. Small changes on particle size distribution are noticed. They may be induced either by a peak of ablation rate in the first 15 s at high fluence (larger particles) or the loss of small particles during transport. We found a positive correlation between I (ICP-MS mean signal intensity in cps) and N (particle density in cm? 3) when varying E0 and t, suggesting that N is controlled by the irradiance (P0 in W·cm? 2). Elemental ratio measurements show a steady state signal after the initial high ablation rate (mass load effect in the plasma torch) and before a late chemical fractionation, induced by poor extraction of bigger, early condensed spherical particles from the deepening crater. Such chemical fractionation effects remain within uncertainties, however. These effects can be limited by monitoring E0 to shorten the initial transient state and delay the attainment of an unfavorable crater aspect ratio. Most adopted settings are for the first time deduced from aerosol characteristics, for infra red femtosecond laser ablation. A short transport (l < 4.0 m) limits the agglomeration of particles by collision process along the tube. Short τ is preferred because of higher P0, yet no benefit is found on ICP-MS signal intensity under 200 fs. Under such pulse widths the increased particle production induces more agglomeration during transport, thereby resulting in higher mass load effects that reduce the ionization efficiency of the plasma torch. Thus, pulse energy must be set to get an optimal balance between the need for a high signal/background ratio and limitation of mass load effects in the plasma torch.  相似文献   

14.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

15.
Chemical speciation [Sb(V) and Sb(III)] affects the mobility, bioavailability and toxicity of antimony. In oxygenated environments Sb(V) dominates whereas thermodynamically unstable Sb(III) may occur. In this study, a simple method for the determination of Sb(III) in non acidic, oxygenated water contaminated with antimony is proposed. The determination of Sb(III) was performed by anodic stripping voltammetry (ASV, 1–20 μg L−1 working range), the total antimony, Sb(tot), was determined either by inductively coupled plasma mass spectrometry (ICP-MS, 1–100 μg L−1 working range) or inductively coupled plasma optical emission spectrometry (ICP-OES, 100–10,000 μg L−1 working range) depending on concentration. Water samples were filtered on site through 0.45 μm pore size filters. The aliquot for determination of Sb(tot) was acidified with 1% (v/v) HNO3. Different preservatives, namely HCl, L(+) ascorbic acid or L(+) tartaric acid plus HNO3, were used to assess the stability of Sb(III) in synthetic solutions.The method was tested on groundwater and surface water draining the abandoned mine of Su Suergiu (Sardinia, Italy), an area heavily contaminated with Sb. The waters interacting with Sb-rich mining residues were non acidic, oxygenated, and showed extreme concentrations of Sb(tot) (up to 13,000 μg L−1), with Sb(III) <10% of total antimony. The stabilization with L(+) tartaric acid plus HNO3 appears useful for the determination of Sb(III) in oxygenated, Sb-rich waters. Due to the instability of Sb(III), analyses should be carried out within 7 days upon the water collection. The main advantage of the proposed method is that it does not require time-consuming preparation steps prior to analysis of Sb(III).  相似文献   

16.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases and relevant gaseous species of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system, and optimized model parameters have been found. The (NaCl + KCl + MgCl2 + CaCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary and ternary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model for short-range ordering was used for the molten salt phase.  相似文献   

17.
A new and complete GC–ICP-MS method is described for direct analysis of trace metals in a gas phase process stream. The proposed method is derived from standard analytical procedures developed for ICP-MS, which are regularly exercised in standard ICP-MS laboratories. In order to implement the method, a series of empirical factors were generated to calibrate detector response with respect to a known concentration of an internal standard analyte. Calibrated responses are ultimately used to determine the concentration of metal analytes in a gas stream using a semi-quantitative algorithm. The method was verified using a traditional gas injection from a GC sampling valve and a standard gas mixture containing either a 1 ppm Xe + Kr mix with helium balance or 100 ppm Xe with helium balance. Data collected for Xe and Kr gas analytes revealed that agreement of 6–20% with the actual concentration can be expected for various experimental conditions.To demonstrate the method using a relevant “unknown” gas mixture, experiments were performed for continuous 4 and 7 hour periods using a Hg-containing sample gas that was co-introduced into the GC sample loop with the xenon gas standard. System performance and detector response to the dilute concentration of the internal standard were pre-determined, which allowed semi-quantitative evaluation of the analyte. The calculated analyte concentrations varied during the course of the 4 hour experiment, particularly during the first hour of the analysis where the actual Hg concentration was under predicted by up to 72%. Calculated concentration improved to within 30–60% for data collected after the first hour of the experiment. Similar results were seen during the 7 hour test with the deviation from the actual concentration being 11–81% during the first hour and then decreasing for the remaining period. The method detection limit (MDL) was determined for the mercury by injecting the sample gas into the system following a period of equilibration. The MDL for Hg was calculated as 6.8 μg · m 3. This work describes the first complete GC–ICP-MS method to directly analyze gas phase samples, and detailed sample calculations and comparisons to conventional ICP-MS methods are provided.  相似文献   

18.
《Comptes Rendus Chimie》2015,18(4):385-390
This work aims to reduce the prices of a wide range of nanomaterials which are unreachable in the industry by using natural sources as silicon and aluminum precursors. In a previous work, silicon and aluminum have been extracted from Volclay after applying the alkaline fusion process at 550 °C, and a water treatment of this fused clay by adopting a weight ratio (1:4, fusion mass:H2O) to synthesize Al-MCM-41 nanomaterials. In this study, the weight ratio of fusion mass:H2O was increased to 1:8 to synthesize a highly structurally ordered MCM-41 under the same reaction conditions. The Al-MCM-41 nanomaterials are investigated by inductively coupled plasma optical emission spectrometry (ICP–OES), powder X-ray diffraction (XRD), N2 adsorption–desorption measurements and scanning electron microscopy (ESEM). As a result, the increase in the weight ratio fusion mass:H2O generates more silica and aluminum, which allows the formation of well-ordered MCM-41 nanomaterials with high pore volume (0.70 cm3/g), high surface area (1044 m2/g), and uniform mesoporous diameter (3.67 nm); as a consequence, the increase in the weight ratio fusion mass:H2O leads to an increase in the mass of Al-MCM-41 (9.3 g for 1:8 compared to 5 g for 1:4), whereas the yield of production of mesoporous materials increases to 86%.  相似文献   

19.
Electrothermal vaporization (ETV) inductively coupled plasma optical emission spectrometry (ICP-OES) and inductively coupled plasma mass spectrometry (ICP-MS) with polyvinylidene fluoride (PVDF) as chemical modifier are critically compared for the determination of refractory elements in coal fly ash and airborne particulates. The atmospheric particulates that collected on a PVDF filter were introduced into the graphite furnace in the form of a slurry by dissolving the filter in dimethylformamide, and the dissolved filter PVDF, along with additional added PVDF powder, was used as a chemical modifier for subsequent ETV-ICP-OES and ETV-ICP-MS determination. The vaporization behaviors of analytes (Ti, Zr, V, Mo, Cr, La) in ETV-ICP-OES/MS were studied in detail, and the optimal ETV operating parameters were obtained. Under the optimized operating conditions, the detection limits of target elements were 0.08-2.7 ng m(-3) for ETV-ICP-OES and 0.5-50 pg m(-3) for ETV-ICP-MS, respectively, with analytical precisions of 3.5-7.3% for ETV-ICP-OES and 3.9-9.6% for ETV-ICP-MS, respectively. The tolerable amounts of matrix elements for ETV-ICP-OES are higher than for ETV-ICP-MS. Both ETV-ICP-OES and ETV-ICP-MS were used to directly determine the trace refractory elements in coal fly ash and airborne particulates and the analytical results are comparable.  相似文献   

20.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaCl + KCl + MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) system, and optimized model parameters have been found. The (MgCl2 + CaCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model was used for the molten salt phase, and the (MgCl2 + MnCl2 + FeCl2 + CoCl2 + NiCl2) solid solution was modeled using a cationic substitutional model with an ideal entropy and an excess Gibbs free energy expressed as a polynomial in the component mole fractions. Finally, the (Na,K)(Mg,Ca,Mn,Fe,Co,Ni)Cl3 and the (Na,K)2(Mg,Mn,Fe,Co,Ni)Cl4 solid solutions were modeled using the Compound Energy Formalism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号