首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《中国化学快报》2021,32(11):3501-3504
Recently, widespread attention has been devoted to the typical layered BiOCl or BiOBr because of the suitable nanostructure and band structure. However, owing to the fast carrier recombination, the photocatalytic performance of BiOX materials is not so satisfactory. Loading 1T phase WS2 nanosheets (NSs) onto Bi5O7Br NSs can improve the photocatalytic N2 fixation activity. Among these, the obtained 1T-WS2@Bi5O7Br composites with optimum 5% 1T-WS2 NSs display a significantly improved photocatalytic N2 fixation rate (8.43 mmol L−1 h−1 g−1), 2.51 times higher than pure Bi5O7Br (3.36 mmol L−1 h−1 g−1). And the outstanding stability of 1T-WS2@Bi5O7Br-5 composites is also achieved. Exactly, the photoexcited electrons from Bi5O7Br NSs are quickly transferred to conductive 1T phase WS2 as electron acceptors, which can promote the separation of carriers. In addition, 1T-WS2 NSs can provide abundant active sites on the basal and edge planes, which can promote the efficiency of photocatalytic N2 fixation. This work offers a novel solution to improve the photocatalytic performance of Bi5O7Br NSs.  相似文献   

2.
Herein, cobalt (Co)-based metal–organic zeolitic imidazole frameworks (ZIF-67) coupled with g-C3N4 nanosheets synthesized via a simple microwave irradiation method. SEM, TEM and HR-TEM results showed that ZIF-67 were uniformly dispersed on g-C3N4 surfaces and had a rhombic dodecahedron shape. The photocatalytic properties of g-C3N4/ZIF-67 nanocomposite were evaluated by photocatalytic dye degradation of crystal violet (CV), 4-chlorophenol (4-CP) and photocatalytic hydrogen (H2) production. In presence of visible light illumination, the photocatalytic dye results showed that 95% CV degradation and 53% 4-CP degradation within 80 min. The H2 production of the g-C3N4/ZIF-67 composite was 2084 μmol g−1, which is 3.84 folds greater than that of bare g-C3N4 (541 μmol g−1).  相似文献   

3.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS_2,将其与石墨相氮化碳(g-C_3N_4)复合,制得MoS_2/g-C_3N_4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS_2/g-C_3N_4复合材料光催化降解罗丹明B(Rh B)的活性,结果表明:将少量MoS_2与g-C_3N_4复合可明显提高光催化活性,且1%(w/w)MoS_2/g-C_3N_4复合物的光催化活性最高,可能的原因是MoS_2和g-C_3N_4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

4.
首先在N-甲基吡咯烷酮溶液中超声剥离得到少层的MoS2,将其与石墨相氮化碳(g-C3N4)复合,制得MoS2/g-C3N4复合材料。采用X射线衍射(XRD),扫描电镜(SEM),X射线光电子能谱(XPS),傅里叶变换红外光谱(FTIR),Raman光谱,紫外-可见漫反射吸收光谱(DRS)和光致荧光(PL)技术对复合材料进行表征。可见光下考察MoS2/g-C3N4复合材料光催化降解罗丹明B(RhB)的活性,结果表明:将少量MoS2与g-C3N4复合可明显提高光催化活性,且1%(w/w)MoS2/g-C3N4复合物的光催化活性最高,可能的原因是MoS2和g-C3N4匹配的能带结构,增大了界面间电荷的传输,降低了光生电子-空穴的复合,进而提高了光催化活性。  相似文献   

5.
PtPd bimetallic alloy nanoparticle (NP)-modified graphitic carbon nitride (g-C3N4) nanosheet photocatalysts were synthesized via chemical deposition precipitation. Characterization of the photocatalytic H2 evolution of the g-C3N4 nanosheets shows that it was significantly enhanced when PtPd alloy NPs were introduced as a co-catalyst. The 0.2 wt% PtPd/g-C3N4 composite photocatalyst gave a maximum H2 production rate of 1600.8 μmol g–1 h–1. Furthermore, when K2HPO4 was added to the reaction system, the H2 production rate increased to 2885.0 μmol g–1 h–1. The PtPd/g-C3N4 photocatalyst showed satisfactory photocatalytic stability and was able to maintain most of its photocatalytic activity after four experimental photocatalytic cycles. In addition, a possible mechanism for the enhanced photocatalytic activity was proposed and verified by various photoelectric techniques. These results demonstrate that the synergistic effect between PtPd and g-C3N4 helps to greatly improve the photocatalytic activity of the composite photocatalyst.  相似文献   

6.
Ag nanoparticles (NPs) were deposited on the surface of g-C3N4 (CN) by an in situ calcination method. NiS was successfully loaded onto the composites by a hydrothermal method. The results showed that the 10 wt%-NiS/1.0 wt%-Ag/CN composite exhibits excellent photocatalytic H2 generation performance under solar-light irradiation. An H2 production rate of 9.728 mmol·g?1·h?1 was achieved, which is 10.82-, 3.45-, and 2.77-times higher than those of pure g-C3N4, 10 wt%-NiS/CN, and 1.0 wt%-Ag/CN composites, respectively. This enhanced photocatalytic H2 generation can be ascribed to the co-decoration of Ag and NiS on the surface of g-C3N4, which efficiently improves light harvesting capacity, photogenerated charge carrier separation, and photocatalytic H2 production kinetics. Thus, this study demonstrates an effective strategy for constructing excellent g-C3N4-related composite photocatalysts for H2 production by using different co-catalysts.  相似文献   

7.
首先以尿素和葡萄糖为前驱体,通过热缩合方法制备了C/g-C3N4,然后利用溶剂热法合成C/g-C3N4/MoS2三元复合材料。通过不同的手段对其进行了表征,结果表明,与C/g-C3N4相比,该三元复合材料不仅具有更强的光吸收性能和更大的表面积,而且更有利于电子的转移。同时对其可见光催化降解甲基橙性能进行研究,结果发现,C/g-C3N4/MoS2-2.0%复合材料(含有质量分数为2.0%的MoS2)表现出最高的反应速率常数(0.0086 min-1),分别为g-C3N4/MoS2-2.0%(0.0015 min-1)和C/g-C3N4(0.0036min-1)的5.7倍和2.3倍。  相似文献   

8.
The fast separation rate of photogenerated carriers and the high utilization of sunlight are still a major challenge that restricts the practical application of carbon nitride (g-C3N4) materials in the field of photocatalytic hydrogen (H2) evolution. Here, ultrathin oxygen (O) engineered g-C3N4 (named UOCN) was successfully obtained by a facial gaseous template sacrificial agent-induced bottom-up strategy. The synergy of O doping and exfoliating bulk into an ultrathin structure is reported to simultaneously achieve high-efficiency separation of photogenerated carriers, enhance the utilization of sunlight, and improve the reduction ability of electrons to promote photocatalytic H2 evolution of UOCN. As a proof of concept, UOCN affords enhanced photocatalytic H2 evolution (93.78 μmol h?1) under visible light illumination, which was significantly better than that of bulk carbon nitride (named CN) with the value of 9.23 μmol h?1. Furthermore, the H2 evolution rate of UOCN at a longer wavelength (λ = 450 nm) was up to 3.92 μmol h?1 due to its extended light absorption range. This work presents a practicable strategy of coupling O dopants with ultrathin structures about g-C3N4 to achieve efficient photocatalytic H2 evolution. This integrated engineering strategy can develop a unique example for the rational design of innovative photocatalysts for energy innovation.  相似文献   

9.
Fundamental photocatalytic limitations of solar CO2 reduction remain due to low efficiency, serious charge recombination, and short lifetime of catalysts. Herein, two-dimensional graphitic carbon nitride nanosheets with nitrogen vacancies (g-C3Nx) located at both three-coordinate N atoms and uncondensed terminal NHx species were prepared by one-step tartaric acid-assistant thermal polymerization of dicyandiamide. Transient absorption spectra revealed that the defects in g-C3N4 act as trapped states of charges to result in prolonged lifetimes of photoexcited charge carriers. Time-resolved photoluminescence spectroscopy revealed that the faster decay of charges is due to the decreased interlayer stacking distance in g-C3Nx in favor of hopping transition and mobility of charge carriers to the surface of the material. Owing to the synergic virtues of strong visible-light absorption, large surface area, and efficient charge separation, the g-C3Nx nanosheets with negligible loss after 15 h of photocatalysis exhibited a CO evolution rate of 56.9 μmol g−1 h−1 under visible-light irradiation, which is roughly eight times higher than that of pristine g-C3N4. This work presents the role of defects in modulating light absorption and charge separation, which opens an avenue to robust solar-energy conversion performance.  相似文献   

10.
Direct Z-scheme g-C3N4/TiO2 nanorod composites were prepared for enhancing photocatalytic activity for pollutant removal. The characterization revealed that the g-C3N4/TiO2 nanorod composite formed a close interface contact between g-C3N4 and TiO2 nanorods, which was of benefit for the charge transfer and resulted in its high photocatalytic activity. The g-C3N4/TiO2 nanorod composites exhibited higher photocatalytic activity for degradation of Rhodamine B (RHB) than bare g-C3N4 and TiO2 nanorods. The high photocatalytic activity of g-C3N4/TiO2 nanorod composites is attributed to the formation of the direct Z-scheme system, in which the electrons from the conduction band (CB) of TiO2 combine with the holes from the valence band (VB) of C3N4 while the electrons from the CB of C3N4 and holes from the VB of TiO2 with stronger redox ability are used to reduce and oxidize pollutants. Based on the radical-trapping experiments, the main reactive species for RHB degradation are O2 and · OH, which are produced by photoinduced electrons and holes with high redox ability. This work provides insights into the photocatalytic mechanism of composite materials for the photocatalytic removal of organic pollutants.  相似文献   

11.
Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanosheets show brilliant application potential in numerous fields. Herein, a membrane with artificial nanopores and self-supporting spacers was fabricated by assembly of 2D g-C3N4 nanosheets in a stack with elaborate structures. In water purification the g-C3N4 membrane shows a better separation performance than commercial membranes. The g-C3N4 membrane has a water permeance of 29 L m−2 h−1 bar−1 and a rejection rate of 87 % for 3 nm molecules with a membrane thickness of 160 nm. The artificial nanopores in the g-C3N4 nanosheets and the spacers between the partially exfoliated g-C3N4 nanosheets provide nanochannels for water transport while bigger molecules are retained. The self-supported nanochannels in the g-C3N4 membrane are very stable and rigid enough to resist environmental challenges, such as changes to pH and pressure conditions. Permeation experiments and molecular dynamics simulations indicate that a novel nanofluidics phenomenon takes place, whereby water transport through the g-C3N4 nanosheet membrane occurs with ultralow friction. The findings provide new understanding of fluidics in nanochannels and illuminate a fabrication method by which rigid nanochannels may be obtained for applications in complex or harsh environments.  相似文献   

12.
Gold (Au) plasmonic nanoparticles were grown evenly on monolayer graphitic carbon nitride (g-C3N4) nanosheets via a facile oil-bath method. The photocatalytic activity of the Au/monolayer g-C3N4 composites under visible light was evaluated by photocatalytic hydrogen evolution and environmental treatment. All of the Au/monolayer g-C3N4 composites showed better photocatalytic performance than that of monolayer g-C3N4 and the 1% Au/monolayer g-C3N4 composite displayed the highest photocatalytic hydrogen evolution rate of the samples. The remarkable photocatalytic activity was attributed largely to the successful introduction of Au plasmonic nanoparticles, which led to the surface plasmon resonance (SPR) effect. The SPR effect enhanced the efficiency of light harvesting and induced an efficient hot electron transfer process. The hot electrons were injected from the Au plasmonic nanoparticles into the conduction band of monolayer g-C3N4. Thus, the Au/monolayer g-C3N4 composites possessed higher migration and separation efficiencies and lower recombination probability of photogenerated electron-hole pairs than those of monolayer g-C3N4. A photocatalytic mechanism for the composites was also proposed.  相似文献   

13.
The insufficient visible light responsive region and fast charge recombination probability are still the key obstacles for designing high-performance photocatalytic system. Herein, a “One Stone, Two Birds” strategy was reported in three-dimensional (3D) hierarchical graphitic carbon nitride (g-C3N4) nanosheet with intramolecular donor-acceptor (D-A) motifs (3D CN) photocatalyst, which solved two urgent problems simultaneously. The 3D hierarchical nanosheets structure endowed 3D CN with abundantly exposed reaction active sites and cross-plane diffusion channels. The formation of internal D-A system facilitated the light absorption and accelerated the transfer and separation of charge carriers. Furthermore, the introducing of D-A motifs optimized the bandgap of g-C3N4 and negative-shifted conduction band position. The as-prepared 3D CN showed excellent visible-light photocatalytic H2 performance, with H2 evolution rate of 2521.2 μmol h?1/g, which was six times higher than the pristine CN. This outstanding performance was ascribed to the synergistic effect of 3D hierarchical nanosheets structure and intramolecular D-A motifs. This current work provides a novel insight to design and construct of 3D hierarchical CN nanostructures with D-A motifs simultaneously, which can be further promising applications for clean and sustainable energy conversion.  相似文献   

14.
通过热解-水热两步法制备了石墨烯/石墨相氮化碳/二硫化钼(RGO/g-C_3N_4/MoS_2)复合材料并使用多种分析表征手段对RGO/g-C_3N_4/MoS_2的结构、形貌及光催化性能进行分析。结果表明,具有异质结构的g-C_3N_4/MoS_2与RGO复合后,通过良好的界面接触和电荷的快速转移,增强了其光生电子-空穴的分离。经可见光照射120 min后,RGO/g-C_3N_4/MoS_2复合材料可降解97%亚甲基蓝。此外,循环实验表明RGO/g-C_3N_4/MoS_2复合材料具有良好的稳定性,经5次循环仍能保持93.2%的光催化活性。  相似文献   

15.
Photocatalytic H2 production via water splitting in a noble-metal-free photocatalytic system has attracted much attention in recent years. In this study, noble-metal-free Ni3N was used as an active cocatalyst to enhance the activity of g-C3N4 for photocatalytic H2 production under visible-light irradiation (λ > 420 nm). The characterization results indicated that Ni3N nanoparticles were successfully loaded onto the g-C3N4, which accelerated the separation and transfer of photogenerated electrons and resulted in enhanced photocatalytic H2 evolution under visible-light irradiation. The hydrogen evolution rate reached ~305.4 μmol h?1 g?1, which is about three times higher than that of pristine g-C3N4, and the apparent quantum yield (AQY) was ~0.45% at λ = 420. Furthermore, the Ni3N/g-C3N4 photocatalyst showed no obvious decrease in the hydrogen production rate, even after five cycles under visible-light irradiation. Finally, a possible photocatalytic hydrogen evolution mechanism for the Ni3N/g-C3N4 system is proposed.  相似文献   

16.
通过焙烧-超声混合法成功地制备了BiOBr/g-C3N4S型异质结复合光催化剂。采用多种表征手段对样品物理属性进行了表征,包括X射线多晶粉末衍射仪(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外可见漫反射光谱(UV-Vis DRS)。研究了所制备样品有/无Fe3+的光-自芬顿催化/光催化降解罗丹明B(RhB)性能。通过捕获实验确定了光催化反应中的主要活性物种,提出了光-自芬顿反应的降解机理。研究结果表明,BiOBr/g-C3N4S型异质结能原位生成H2O2,添加Fe3+后,H2O2被原位活化成活性物种且光生电流和载流子分离效率获得显著提高。该光-自芬顿过程能高效降解RhB,其反应速率常数为0.208 min-1,约为无Fe3+光催化反应速率常数的5.3倍,在光-自芬顿循环使用过程中表现出良好的稳定性。Fe...  相似文献   

17.
《中国化学快报》2023,34(4):107683
Regulating flow direction of photo-excited electrons from interior to active sites in surface is critical to enhance the photocatalytic performance. Herein, photoinduced chemical reduction process was utilized to pinpoint deposit CdS and NiS nanodots sequentially onto g-C3N4 nanosheets. The resulted hybrid composite NiS/CdS/g-C3N4 was much more active under visible light, and eventually boosted the hydrogen evolution rate of 3015 μmol g?1 h?1, to be 2.4 folds better than that of g-C3N4. Because of the relative low content of CdS (around 3.0 wt%), the enhanced activity is due to the favoring band overlapping and promoting charge separation rather than increasing light absorption. Femto-second time-resolved transient absorption spectroscopy (fs-TAS) clearly reveals that the photo-excited electrons are from g-C3N4, and then migrate unidirectionally to CdS and finally to NiS, which is caused by the precisely regulate the position of CdS and NiS on g-C3N4 surface. This study elucidates the electron transfer kinetics and processes in multi-component system and affords a new avenue to construct stable photocatalysts with high activity.  相似文献   

18.
Polypyrrole-modified graphitic carbon nitride composites (PPy/g-C3N4) are fabricated using an in-situ polymerization method to improve the visible light photocatalytic activity of g-C3N4. The PPy/g-C3N4 is applied to the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Various characterization techniques are employed to investigate the relationship between the structural properties and photoactivities of the as-prepared composites. Results show that the specific surface area of the PPy/g-C3N4 composites increases upon assembly of the amorphous PPy nanoparticles on the g-C3N4 surface. Owing to the strong conductivity, the PPy can be used as a transition channel for electrons to move onto the g-C3N4 surface, thus inhibiting the recombination of photogenerated carriers of g-C3N4 and improving the photocatalytic performance. The elevated light adsorption of PPy/g-C3N4 composites is attributed to the strong absorption coefficient of PPy. The composite containing 0.75 wt% PPy exhibits a photocatalytic efficiency that is 3 times higher than that of g-C3N4 in 2 h. Moreover, the degradation kinetics follow a pseudo-first-order model. A detailed photocatalytic mechanism is proposed with ·OH and ·O2? radicals as the main reactive species. The present work provides new insights into the mechanistic understanding of PPy in PPy/g-C3N4 composites for environmental applications.  相似文献   

19.
《印度化学会志》2023,100(8):101047
PB-CuIn@C60 nanosheets (1A-1G) were fabricated and characterized systematacially. PB-CuIn@10%C60 (1G) exhibits clearly improved O2 producing rate of 19.4 μmol g−1 h−1 for photocatalytic H2O2 splitting and 4 cycles of repeated O2 evolution. Seven ones achieved thermal stability for 200 °C.  相似文献   

20.
Molybdenum disulfide (MoS2), with a two-dimensional (2D) structure, has attracted huge research interest due to its unique electrical, optical, and physicochemical properties. MoS2 has been used as a co-catalyst for the synthesis of novel heterojunction composites with enhanced photocatalytic hydrogen production under solar light irradiation. In this review, we briefly highlight the atomic-scale structure of MoS2 nanosheets. The top-down and bottom-up synthetic methods of MoS2 nanosheets are described. Additionally, we discuss the formation of MoS2 heterostructures with titanium dioxide (TiO2), graphitic carbon nitride (g-C3N4), and other semiconductors and co-catalysts for enhanced photocatalytic hydrogen generation. This review addresses the challenges and future perspectives for enhancing solar hydrogen production performance in heterojunction materials using MoS2 as a co-catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号