首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
WS2 nanosheets were prepared by the solvent-thermal method in the presence of n-butyl lithium, then the exfoliation under the condition of ultrasound. The formed WS2 nanosheets were conjugated with thiol-modified polyethylene glycol (PEG-SH) to improve the biocompatibility. The nanosheets (WS2-PEG) were able to inhibit the growth of a model HeLa cancer cell line in vitro due to the high photothermal conversion efficiency of 35% irradiated by an 808 nm laser (1 W/cm2). As a proof of concept, WS2-PEG nanosheets with the better X-ray attenuation property than the clinical computed tomography (CT) contrast agent (Iohexol) could be performed for CT imaging of the lymph vessel.  相似文献   

2.
Multifunctional Ag@Au@ phenol formaldehyde resin (PFR) particles loaded with folic acids (FA) have been designed for killing tumor cells through photothermy conversion under the irradiation of near-infrared (NIR) light. Possessing the virtue of good fluorescence, low toxicity, and good targeting, the nanocomposite consists of an Ag core, an Au layer, a PFR shell, and folic acids on the PFR shell. The Ag@PFR core-shell structure can be prepared with a simple hydrothermal method after preheating. We then filled the PFR shell with a layer of Au by heating and modified the shell with polyelectrolyte to change its surface charge state. To capture tumor cells actively, FA molecules were attached onto the surface of the Ag@Au@PFR particles in the presence of 1-ethyl-3-(3-dimethly aminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS). Owing to the excellent property of Au NPs and Ag NPs as photothermal conversion agents, the Ag@Au@ PFR@FA particles can be utilized to kill tumor cells when exposed to NIR light.  相似文献   

3.
Photothermal therapy(PTT), typically ablates tumors via hyperthermia generated from photothermal agents(PTAs) under laser irradiation, has attracted great attentions in the past decades. Unfortunately,longstanding, frequent and high-power density laser irradiations are needed to maintain the hyperthermal status(>50 °C) for efficient therapy, which will damage the skin and nearby healthy tissues. Suppressing cancer cells with a mild temperature elevation is more attractive and feasible for PTT...  相似文献   

4.
Thickness does matter! The ultrathin nature of 1.8 nm-thick Pd nanosheets prevents them entering cells effectively. A 13-times enhancement in the cells' uptake of the Pd nanosheets has now been achieved by silica coating together with surface functionalization, therefore significantly improving their NIR photothermal cell-killing efficacy.  相似文献   

5.
基于香豆素荧光团设计合成了一种光热剂(ECEI),其光热转换效率可达 85.78%。此外,冷热循环的实验结果表明,ECEI 具有良好的光稳定性。即使在线粒体膜电位受损的情况下,ECEI 也能有效靶向线粒体,在激光照射下诱导癌细胞死亡。这使 ECEI能够最大程度地破坏线粒体,从而抑制肿瘤细胞的繁殖。对小鼠肿瘤照射 1次后,小鼠肿瘤在 10 d内逐渐消失,这表明ECEI具有良好的肿瘤抑制效果。  相似文献   

6.
基于香豆素荧光团设计合成了一种光热剂(ECEI),其光热转换效率可达 85.78%。此外,冷热循环的实验结果表明,ECEI 具有良好的光稳定性。即使在线粒体膜电位受损的情况下,ECEI 也能有效靶向线粒体,在激光照射下诱导癌细胞死亡。这使 ECEI能够最大程度地破坏线粒体,从而抑制肿瘤细胞的繁殖。对小鼠肿瘤照射 1次后,小鼠肿瘤在 10 d内逐渐消失,这表明ECEI具有良好的肿瘤抑制效果。  相似文献   

7.
We developed nanosized, reduced graphene oxide (nano-rGO) sheets with high near-infrared (NIR) light absorbance and biocompatibility for potential photothermal therapy. The single-layered nano-rGO sheets were ~20 nm in average lateral dimension, functionalized noncovalently by amphiphilic PEGylated polymer chains to render stability in biological solutions and exhibited 6-fold higher NIR absorption than nonreduced, covalently PEGylated nano-GO. Attaching a targeting peptide bearing the Arg-Gly-Asp (RGD) motif to nano-rGO afforded selective cellular uptake in U87MG cancer cells and highly effective photoablation of cells in vitro. In the absence of any NIR irradiation, nano-rGO exhibited little toxicity in vitro at concentrations well above the doses needed for photothermal heating. This work established nano-rGO as a novel photothermal agent due to its small size, high photothermal efficiency, and low cost as compared to other NIR photothermal agents including gold nanomaterials and carbon nanotubes.  相似文献   

8.
This review aims to provide a summary of the progress in fluorescent dyes for photothermal therapy in recent years and it is classified according to the structure of organic molecules including cyanines, phthalocyanines, rhodamine analogues and BODIPYs.  相似文献   

9.
In this work, we prepared polyacrylic acid (PAA) coated gold nanorods (GNRs) and then the targeting peptide modified GNRs. The biocompatibility and stability of functionalized GNRs were investigated by monitoring the surface plasmon resonance (SPR) absorption intensity. The efficacy of targeted thermal therapy can be significantly enhanced via decoration with surface-bound peptide which was obtained through phage display technology. In addition, the photothermal therapy was monitored in real time with the multi-channel function of a confocal laser scanning microscope (CLSM) coupled with an 808 nm laser. This selective photothermal therapy of GNRs is a promising candidate for phototherapeutic applications.  相似文献   

10.
Photothermal therapy (PTT) ablates tumors by thermal effects of photothermal agents (PTAs), and attracts wide attention due to the non-invasive characteristic. The ideal PTAs are expected to have high photothermal conversion effect under NIR irradiation, as well as targeting abilities and good biocompatibility satisfying the need of application in vivo. Nanoparticles (NPs) are commonly used as anti-tumor materials, and plenty of researches on therapeutical NPs for PTT treatment have been developed. Among various building blocks for photothermal NPs, polymer materials for biomedical applications have great advantages due to their negligible toxicity, flexibility for functional modification, and ability to integrate multiple therapeutic strategies. This review focuses on the polymer materials utilized in photothermal NP designing, including their application as excellent carriers and powerful PTAs with great PTT effects. Furthermore, the synergy therapy based on polymeric nanoplatform for enhancing PTT therapeutic efficiency will be introduced.  相似文献   

11.
A single-step LbL procedure to functionalize CTAB-capped GNRs via electrostatic self-assembly is reported. This approach allows for consistent biomolecule/GNR coupling using standard carboxyl-amine conjugation chemistry. The focus is on cancer-targeting biomolecule/GNR conjugates and selective photothermal destruction of cancer cells by GNR-mediated hyperthermia and NIR light. GNRs were conjugated to a single-chain antibody selective for colorectal carcinoma cells and used as probes to demonstrate photothermal therapy. Selective targeting and GNR uptake in antigen-expressing SW 1222 cells were observed using fluorescence microscopy. Selective photothermal therapy is demonstrated using SW 1222 cells, where >62% cell death was observed after cells are treated with targeted A33scFv-GNRs.  相似文献   

12.
Triple negative breast cancer (TNBC) is one of the most malignant subtypes of breast cancer. Here, we report the construction of graphene nanoribbon (GNR)-based supramolecular ensembles with dual-receptor (mannose and αvβ3 integrin receptors) targeting function, denoted as GNR-Man/PRGD, for targeted photothermal treatment (PTT) of TNBC. The GNR-Man/PRGD ensembles were constructed through the solution-based self-assembly of mannose-grafted GNRs (GNR-Man) with a pyrene-tagged αvβ3 integrin ligand (PRGD). Enhanced PTT efficacies were achieved both in vitro and in vivo compared to that of the non-targeting equivalents. Tumor-bearing live mice were administered (tail vein) with GNR-Man/PRGD and then each mice group was subjected to PTT. Remarkably, GNR-Man/PRGD induced complete ablation of the solid tumors, and no tumor regrowth was observed over a period of 15 days. This study demonstrates a new and promising platform for the development of photothermal nanomaterials for targeted tumor therapy.

Dual receptor-targeting supramolecular glycomaterials are constructed based on graphene nanoribbons for the targeted photothermal therapy of triple-negative breast cancer in vivo.  相似文献   

13.
Developing selectively targeted photothermal agents to reduce side effects in photothermal therapy remains a great challenge. Inspired by the key role of endoplasmic reticulum in the protein synthesis and intracellular signal transduction, particularly for the immunogenic cell death induced by endoplasmic reticulum stress, we developed an endoplasmic reticulum-targeted organic photothermal agent(Ts-PTRGD) for enhancing photothermal therapy of tumor. The photothermal agent was covalently attached...  相似文献   

14.
《中国化学快报》2022,33(10):4605-4609
It is of great significance to develop effective antibacterial agents and methods to combat drug resistant bacterial infections due to its increasing threaten to human health and the ineffectiveness of antibiotics. Herein, a multifunctional hybrid nano-assembly (M1-Fe NPs) based on conjugated oligomer and ferrous ion was engineered with favorable bactericidal activity for synergetic antibacterial therapy. The chelation of ferrous ion not only enhances the photothermal conversion efficiency of M1 but also endows the nano-assembly with catalytic capability of transferring H2O2 into stronger oxidant hydroxyl radicals (?OH). Meanwhile, the generated heat can further promote the Fenton reaction activity. By generating cytotoxic heat and oxidative ?OH, M1-Fe NPs can effectively kill Staphylococcus aureus in vitro and in vivo with the aid of low dosage of H2O2. The work provides a new multifunctional platform for combinational drug resistant antibacterial therapy and even antitumor therapy.  相似文献   

15.
Russian Chemical Bulletin - In order to study the possibility of using a metal complex of the porphyrin series, FeIIICl-tetraphenylporphyrin (FeClTPP), and its polymeric form as antitumor agents...  相似文献   

16.
In recent years, two-dimensional nanomaterials (2D) prominent for site specific photothermal treatment (PTT), which are one of the most interesting strategy due to their maximizing cancer cell killing efficiency without the normal cells. Several robust methods are established for 2D material synthesis and improving the photothermal conversion efficiency (PCE), biocompatibility, and photostability in cancer PTT. Such preferred mechanism like nanomaterial decoration on to their surface would enable access to tunable 2D nanomaterial properties to improve cancer PTT. Here, we first time report a robust route for deposition of tantalum (TaO2) on to chitosan (CS) coated molybdenum sulphite (MoS2) nanosheet surface via electrostatic interaction, which assists to improve cancer PTT efficiency. Detailed studies prove that prepared TaO2-CS-MoS2 nanomaterial shows lack of toxicity, photostability and PCE was calculated from 26 °C to 47.2 °C under the 808 nm irradiation/5 min. Therefore, the TaO2 deposition particularly interest to promote the photostability, biocompatibility and PCE of bare MoS2 nanosheets. Therefore, the possible mechanism is highly expected to improve biological features in cancer PTT.  相似文献   

17.
Organic charge-transfer complexes (CTCs) can function as versatile second near-infrared (NIR-II) theranostic platforms to tackle complicated solid tumors, while the structure–property relationship is still an unanswered problem. To uncover the effect of molecular stacking modes on photophysical and biochemical properties, herein, five ferrocene derivatives were synthesized as electron donors and co-assembled with electron-deficient F4TCNQ to form the corresponding CTCs. The crystalline and photophysical results showed that only herringbone-aligned CTCs (named anion-radical salts, ARS NPs) possess good NIR-II absorption ability and a photothermal effect for short π–π distances (<3.24 Å) and strong π-electron delocalization in the 1D F4TCNQ anion chain. More importantly, the ARS NPs simultaneously possess ·OH generation and thiol (Cys, GSH) depletion abilities to perturb cellular redox homeostasis for ROS/LPO accumulation and enhanced ferroptosis. In vitro experiments, FcNEt-F4 NPs, and typical ARS NPs, show outstanding antitumor efficiency for the synergistic effect of NIR-II photothermal therapy and ferroptosis, which provides a new paradigm to develop versatile CTCs for anti-tumor application.

Based on crystal engineering of charge transfer complexes (CTCs), ferrocene-based CTCs, with Fenton-catalyzing, biothiol-responsive and NIR-II photothermal abilities, were controllably developed and the structure–property relationship was revealed.  相似文献   

18.
Photothermal therapy(PTT)-induced immune response has attracted much attention, however, which cannot work at full capacity. In this study, the simvastatin(SV) adjuvant is loaded into gold nanocages(AuNCs) to develop a simple drug delivery system, which can efficiently utilize the tumor-associated antigens(TAAs) for improving immune responses. AuNCs/SV-mediated PTT treatment enhances tumor cells damage and promotes the release of TAAs which are immediately captured by Au NCs/SV to form AuNCs/SV/...  相似文献   

19.
20.
Near-infrared (NIR) small molecular organic dyes as photothermal agents for cancer photothermal therapy (PTT) have attracted considerable research attention. Herein, two donor-acceptor-donor (D-A-D) structured NIR dyes, BBTT and SeBTT, are rationally designed, where the only difference is one heteroatom within the acceptor unit varying from sulfur to selenium (Se). More importantly, SeBTT NPs exhibit stronger NIR absorbance and higher photothermal conversion efficiency (PTCE ≈ 65.3%). In vivo experiments illustrate that SeBTT NPs can be utilized as a high contrast photoacoustic imaging (PAI) agent, and succeed in tumor suppression without noticeable damage to main organs under NIR photoirradiation. This study presents an effective molecular heteroatom surgery strategy to regulate the photothermal properties of NIR small molecules for enhanced PAI and PTT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号