首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
RESONANCE RAMAN SPECTRA OF THE Pr-FORM OF PHYTOCHROME   总被引:1,自引:0,他引:1  
Abstract— Resonance Raman spectra of the Pr-form of oat phytochrome have been obtained at 77 K. Interference from phytochrome fluorescence is avoided by employing far-red 752 nm excitation. Vibrational assignments are suggested for the tetrapyrrole chromophore in phytochrome by comparison with previously published model compound spectra and by examining the characteristic shifts induced by deuteration of the pyrrole nitrogens. The lack of carbonyl intensity, the frequencies of the 1626 and 1644 cm-1 C=C stretching modes, and the presence of an intense mode at 1326 cm-1 are all consistent with a protonated structure for the tetrapyrrole chromophore in Pr. This suggests that the -50 nm red-shift of the protein-bound chromophore absorption compared to the chromophore in vitro is caused by protonation of the pyrrole nitrogen.  相似文献   

2.
The synthesis of novel ortho-coumaric acid derivatives, with an amide group linked with an olefin moiety, which introduced photoinduced switching of the intramolecular hydrogen bonds is presented. An intramolecular OH...O=C hydrogen bond formed in a Z-phenol compound was switched to an intramolecular NH...O hydrogen bond in Z phenolate state via deprotonation. The pK(a) value of the Z-phenol derivative was lower than that of E-phenol, and a novel photocycle system involving protonation and deprotonation processes was achieved.  相似文献   

3.
The mechanism of the proton transfer and the concomitant molecular structural and hydrogen bond rearrangements after the photoisomerization of the chromophore in the photocycle of photoactive yellow protein are theoretically investigated by using the QM/MM method and molecular dynamics calculations. The free energy surface along this proton-transfer process is determined. This work suggests the important role of the water molecular migration into the moiety of chromophore, which facilitates proton transfer by the hydrogen bond rearrangement and the hydration of the pB' state.  相似文献   

4.
Quantum chemical calculations aimed at identifying the factors controlling the acidity of phytochromobilin, the tetrapyrrole chromophore of the plant photoreceptor phytochrome, are reported. Phytochrome is converted from an inactive (Pr) to an active form (Pfr) through a series of events initiated by a Z --> E photoisomerization of phytochromobilin, forming the Lumi-R intermediate, and much controversy exists as to whether the protonation state of the chromophore (cationic in Pr with all nitrogens protonated) changes during the photoactivation. Here, relative ground (S0) and excited-state (S1) pKa s of all four pyrrole moieties of phytochromobilin in all 64 possible configurations with respect to the three methine bridges are calculated in a protein-like environment, using a recently benchmarked level of theory. Accordingly, the relationships between acidity and chromophore geometry and charge distribution, hydrogen bonding, and light absorption are investigated in some detail, and discussed in terms of possible mechanisms making a proton transfer reaction more probable along the Pr --> Pfr reaction than in the parent cationic Pr state. It is found that charge distribution in the cationic species, intra-molecular hydrogen bonding in the neutral, and hydrogen bonding with two highly conserved aspartate and histidine residues have a significant effect on the acidity, while overall chromophore geometry and electronic state are less important factors. Furthermore, based on the calculations, two processes that may facilitate a proton transfer by substantially lowering the pKa s relative to their Pr values are identified: (i) a thermal Z,anti --> Z,syn isomerization at C5, occurring after formation of Lumi-R; (ii) a perturbation of the hydrogen bonding network which in Pr comprises the nitrogens of pyrroles A, B and C and the two aspartate and histidine residues.  相似文献   

5.
Difference patterns of 13C NMR chemicals shifts for the protonation of a free model compound in organic solution, as reported in the literature (M. Stanek, K. Grubmayr [1998] Chem. Eur. J. 4 , 1653–1659), were compared with changes in the protonation state occurring during holophytochrome assembly from phycocyanobilin (PCB) and the apoprotein. Both processes induce identical changes in the NMR signals, indicating that the assembly process is linked to protonation of the chromophore, yielding a cationic cofactor in a heterogeneous, quasi-liquid protein environment. The identity of both difference patterns implies that the protonation of a model compound in solution causes a partial stretching of the geometry of the macrocycle as found in the protein. In fact, the similarity of the difference pattern within the bilin family for identical chemical transformations represents a basis for future theoretical analysis. On the other hand, the change of the 13C NMR chemical shift pattern upon the Pr → Pfr photoisomerization is very different to that of the free model compound upon ZZZZZE photoisomerization. Hence, the character of the double-bond isomerization in phytochrome is essentially different from that of a classical photoinduced double-bond isomerization, emphasizing the role of the protein environment in the modulation of this light-induced process.  相似文献   

6.
The photoreceptor phytochrome switches photochromically between two thermally stable states called Pr and Pfr. Here, we summarize recent solid‐state magic‐angle spinning (MAS) NMR work on this conversion process and interpret the functional mechanism in terms of a nano‐machine. The process is initiated by a double‐bond photoisomerization of the open‐chain tetrapyrrole chromophore at the methine bridge connecting pyrrole rings C and D. The Pr‐state chromophore and its surrounding pocket in canonical cyanobacterial and plant phytochromes has significantly less order, tends to form isoforms and is soft. Conversely, Pfr shows significantly harder chromophore–protein interactions, a well‐defined protonic and charge distribution with a clear classical counterion for the positively charged tetrapyrrole system. The soft‐to‐hard/disorder‐to‐order transition involves the chromophore and its protein surroundings within a sphere of at least 5.5 Å. The relevance of this collective event for signaling is discussed. Measurement of the intermediates during the Pfr → Pr back‐reaction provides insight into the well‐adjusted mechanics of a two‐step transformation. As both Pr → Pfr and Pfr → Pr reaction pathways are different in ground and excited states, a photochemically controlled hyper‐landscape is proposed allowing for ratchet‐type reaction dynamics regulating signaling activity.  相似文献   

7.
The photoactive yellow protein (PYP) acts as a light sensor to its bacterial host: it responds to light by changing shape. After excitation by blue light, PYP undergoes several transformations, to partially unfold into its signaling state. One of the crucial steps in this photocycle is the protonation of p-coumaric acid after excitation and isomerization of this chromophore. Experimentalists still debate on the nature of the proton donor and on whether it donates the hydrogen directly or indirectly. To obtain better knowledge of the mechanism, we studied this proton transfer using Car-Parrinello molecular dynamics, classical molecular dynamics, and computer simulations combining these two methods (quantum mechanics/molecular mechanics, QMMM). The simulations reproduce the chromophore structure and hydrogen-bond network of the protein measured by X-ray crystallography and NMR. When the chromophore is protonated, it leaves the assumed proton donor, glutamic acid 46, with a negative charge in a hydrophobic environment. We show that the stabilization of this charge is a very important factor in the mechanism of protonation. Protonation frequently occurs in simplified ab initio simulations of the chromophore binding pocket in vacuum, where amino acids can easily hydrogen bond to Glu46. When the complete protein environment is incorporated in a QMMM simulation on the complete protein, no proton transfer is observed within 14 ps. The hydrogen-bond rearrangements in this time span are not sufficient to stabilize the new protonation state. Force field molecular dynamics simulations on a much longer time scale have shown which internal rearrangements of the protein are needed. Combining these simulations with more QMMM calculations enabled us to check the stability of protonation states and clarify the initial requirements for the proton transfer in PYP.  相似文献   

8.
The conversion of the plant photoreceptor phytochrome from an inactive (Pr) to an active form (Pfr) is accomplished by a red-light induced Z --> E photoisomerization of its phytochromobilin chromophore. In recent years, the question whether the photoactivation involves a change in chromophore protonation state has been the subject of many experimental studies. Here, we have used quantum chemical methods to calculate relative ground and excited-state pKa values of the different pyrrole moieties of phytochromobilin in a protein-like environment. Assuming (based on experimental data) a Pr ZaZsZa chromophore and considering isomerizations at C15 and C5, it is found that moieties B and C are the strongest acids both in the ground state and in the bright first singlet excited state, which is rationalized in simple geometric and electronic terms. It is also shown that neither light absorption nor isomerization increases the acidity of phytochromobilin relative to the reference Pr state with all pyrrolenic nitrogens protonated. Hence, provided that the subset of chromophore geometries under investigation is biologically relevant, there appears to be no intrinsic driving force for a proton-transfer event. In a series of benchmark calculations, the performance of ab initio and time-dependent density functional theory methods for excited-state studies of phytochromobilin is evaluated in light of available experimental data.  相似文献   

9.
We investigate solvent viscosity and polarity effects on the photoisomerization of the protonated and deprotonated forms of two analogues of the photoactive yellow protein (PYP) chromophore. These are trans-p-hydroxybenzylidene acetone and trans-p-hydroxyphenyl cinnamate, studied in solutions of different polarity and viscosity at room temperature, by means of femtosecond fluorescence up-conversion. The fluorescence lifetimes of the protonated forms are found to be barely sensitive to solvent viscosity, and to increase with increasing solvent polarity. In contrast, the fluorescence decays of the deprotonated forms are significantly slowed down in viscous media and accelerated in polar solvents. These results elucidate the dramatic influence of the protonation state of the PYP chromophore analogues on their photoinduced dynamics. The viscosity and polarity effects are, respectively, interpreted in terms of different isomerization coordinates and charge redistribution in S(1). A trans-to-cis isomerization mechanism involving mainly the ethylenic double-bond torsion and/or solvation is proposed for the anionic forms, whereas "concerted" intramolecular motions are proposed for the neutral forms.  相似文献   

10.
Red‐light photosensory proteins, phytochromes, link light activation to biological functions by interconverting between two conformational states. For this, they undergo large‐scale secondary and tertiary changes which follow small‐scale Z to E bond photoisomerization of the covalently bound bilin chromophore. The complex network of amino acid interactions in the chromophore‐binding pocket plays a central role in this process. Highly conserved Y263 and H290 have been found to be important for the photoconversion yield, while H260 has been identified as important for bilin protonation and proton transfer steps. Here, we focus on the roles these amino acids are playing in preserving the chemical properties of bilin in the resting Pr state of the photosensory unit of a bacteriophytochrome from Deinococcus radiodurans. By using pH‐dependent UV‐Vis spectroscopy and spectral decomposition modeling, we confirm the importance of H260 for biliverdin protonation. Further, we demonstrate that in the canonical bacteriophytochromes, the pKa value of the phenol group of the Y263 is uncommonly low. This directly influences the protonation of the bilin molecule and likely the functional properties of the protein. Our study expands the understanding of the tight interplay between the nearby amino acids and bilin in the phytochrome family.  相似文献   

11.
Abstract— The changes in the chromophore structure of pea phytochrome during phototransformation in vitro from the red-light-absorbing form (Pr) to the far-red-light-absorbing form (Pfr), and from Pfr to Pr, were analysed in terms of wavelength and oscillator strength of absorption, using the zero-differential overlap approximation of the molecular orbital theory for electrons. The effect of a point-charge and a point-dipole on the optical absorption of phytochromobilin intermediates were examined using the stationary perturbation theory for degenerate states. The results indicate that the cis-trans photoisomerization of the pyrrole ring D, if any, occurred within 10 μs after a laser-flash excitation of the phytochrome, and that the conformations of phytochromobilin and the protein moiety of phytochrome were not significantly changed during the period of examination of phototransformation in either direction.  相似文献   

12.
We have used a nanosecond pH-jump technique, coupled with simultaneous transient absorption and fluorescence emission detection, to characterize the dynamics of the acid-induced spectral changes in the GFPmut2 chromophore. Disappearance of the absorbance at 488 nm and the green fluorescence emission occurs with a thermally activated, double exponential relaxation. To understand the source of the two transients we have introduced mutations in amino acid residues that interact with the chromophore (H148G, T203V, and E222Q). Results indicate that the faster transient is associated with proton binding from the solution, while the second process, smaller in amplitude, is attributed to structural rearrangement of the amino acids surrounding the chromophore. The protonation rate shows a 3-fold increase for the H148G mutant, demonstrating that His148 plays a key role in protecting the chromophore from the solvent. The deprotonation rate for T203V is an order of magnitude smaller, showing that the hydrogen bond with the hydroxyl of Thr203 is important in stabilizing the deprotonated form of the chromophore. A kinetic model suggests that, in addition to protecting the chromophore from the solvent, His148 may act as the primary acceptor for the protons on the way to the chromophore.  相似文献   

13.
We present a stochastic model for the kinetics of photoinduced anisotropy in a sample of molecular chromophores that may undergo photoisomerization. It is assumed that the chromo‐phores do not interact among them, but are embedded in a medium that slows down the rotational diffusion. The model makes use of data about the photoinduced reorientation of the single chromophore, its photoisomerization and its rotational diffusion, that are made available by molecular dynamics simulations. For the first time such molecular scale processes are computationally connected to the development of anisotropy in a large sample and on a long time scale. A test on azobenzene shows the potentiality of the method and the interplay between photoinduced anisotropy and photoisomerization. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Phytochrome photoreceptors operate via photoisomerization of a bound bilin chromophore. Their typical architecture consists of GAF, PAS and PHY domains. Knotless phytochromes lack the PAS domain, while retaining photoconversion abilities, with some being able to photoconvert with just the GAF domain. Therefore, we investigated the ultrafast photoisomerization of the Pr state of a knotless phytochrome to reveal the effect of the PHY domain and its “tongue” region on the transduction of the light signal. We show that the PHY domain does not affect the initial conformational dynamics of the chromophore. However, it significantly accelerates the consecutively induced reorganizational dynamics of the protein, necessary for the progression of the photoisomerization. Consequently, the PHY domain keeps the bilin and its binding pocket in a more reactive conformation, which decreases the extent of protein reorganization required for the chromophore isomerization. Thereby, less energy is lost along nonproductive reaction pathways, resulting in increased efficiency.  相似文献   

15.
Agp1 is a prototypical bacterial phytochrome from Agrobacterium fabrum harboring a biliverdin cofactor which reversibly photoconverts between a red‐light‐absorbing (Pr) and a far‐red‐light‐absorbing (Pfr) states. The reaction mechanism involves the isomerization of the bilin‐chromophore followed by large structural changes of the protein matrix that are coupled to protonation dynamics at the chromophore binding site. Histidines His250 and His280 participate in this process. Although the three‐dimensional structure of Agp1 has been solved at high resolution, the precise position of hydrogen atoms and protonation pattern in the chromophore binding pocket has not been investigated yet. Here, we present protonated structure models of Agp1 in the Pr state involving appropriately placed hydrogen atoms that were generated by hybrid quantum mechanics/molecular mechanics‐ and electrostatic calculations and validated against experimental structural‐ and spectroscopic data. Although the effect of histidine protonation on the vibrational spectra is weak, our results favor charge neutral H250 and H280 both protonated at Nε. However, a neutral H250 with a proton at Nε and a cationic H280 may also be possible. Furthermore, the present QM/MM calculations of IR and Raman spectra of Agp1 containing isotope‐labeled BV provide a detailed vibrational assignment of the biliverdin modes in the fingerprint region.  相似文献   

16.
17.
Abstract Six new bilin chromophores of the plant photoreceptor phytochrome have been synthesized, carrying at the photoisomerizing ring D an oxygen or a sulfur atom or a methylene group instead of the pyrrole nitrogen atom. These furanone-, thiophenone- or cyclopentenone-containing compounds bound covalently to the recombinant apophytochrome phyA of Avena sativa. The novel chromoproteins showed hypsochromically shifted absorption spectra with respect to native phytochrome and a strongly diminished photochemical activity, but a three- to four-fold higher fluorescence quantum yield. These results demonstrate that, on the one hand, also ring D-modified chromophores can be forced into a partially extended structure, required for incorporation into the apoprotein binding pocket and covalent binding. On the other hand, the modifications introduced into ring D of the chromophores strongly impede the formation of stable far red-absorbing forms of plant photoreceptor phytochrome (P(fr)-form) of the chromoproteins, highlighting especially the role of the pyrrole nitrogen atom and hydrogen bonding for the precise interactions between that part of the chromophore and the protein for the P(fr)-formation.  相似文献   

18.
Macroscopic and spatially ordered motions of self‐assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter‐scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self‐assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry.  相似文献   

19.
We investigated femtosecond and picosecond time-resolved fluorescence dynamics of a tetrameric fluorescent protein Kaede with a red chromophore (red Kaede) to examine a relationship between the excited-state dynamics and a quaternary structure of the fluorescent protein. Red Kaede was obtained by photoconversion from green Kaede that was cloned from a stony coral Trachyphyllia geoffroyi. In common with other typical fluorescent proteins, a chromophore of red Kaede has two protonation states, the neutral and the anionic forms in equilibrium. Time-resolved fluorescence measurements clarified that excitation of the neutral form gives the anionic excited state with a time constant of 13 ps at pH 7.5. This conversion process was attributed to fluorescence resonance energy transfer (FRET) from the photoexcited neutral form to the ground-state anionic form that is located in an adjacent subunit in the tetramer. The time-resolved fluorescence data measured at different pH revealed that excited-state proton transfer (ESPT) also occurs with a time constant of 300 ps and hence that the FRET and ESPT take place simultaneously in the fluorescent protein as competing processes. The ESPT rate in red Kaede was significantly slower than the rate in Aequorea GFP, which highly likely arises from the different hydrogen bond network around the chromophore.  相似文献   

20.
The photoactive yellow protein (PYP) is an important model protein for many (photoactive) signaling proteins. Key steps in the PYP photocycle are the isomerization and protonation of its chromophore, p-coumaric acid (pCA). In the ground state of the protein, this chromophore is in the trans configuration with its phenolic oxygen deprotonated. For this paper, we studied four different configurations of pCA solvated in water with ab initio molecular dynamics simulations as implemented in CP2K/Quickstep. We researched the influence of the protonation and isomerization state of pCA on its hydrogen-bonding properties and on the Mulliken charges of the atoms in the simulation. The chromophore isomerization state influenced the hydrogen-bonding less than its protonation state. In general, more charge yielded a higher hydrogen-bond coordination number. Where deprotonation increases both the coordination number and the residence time of the water molecules around the chromophore, protonation showed a somewhat lower coordination number on two of the three pCA oxygens but much higher residence times on all of them. This could be explained by the increased polarization of the OH groups of the molecule. The presence of the chromophore also influenced the charge and polarization of the water molecules around it. This effect was different in the four systems studied and mainly localized in the first solvation shell. We also performed a proton-transfer reaction from hydronium through various other water molecules to the chromophore. In this small charge-separated system, the protonation occurred within 6.5 ps. We identified the transition state for the final step in this protonation series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号