首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expansion of aerosols generated by near infrared (NIR) nanosecond (ns) and femtosecond (fs) laser ablation (LA) of metals at atmospheric pressures was explored by laser-induced scattering. In order to achieve adequate temporal and spatial resolution a pulsed laser source was utilized for illuminating a 0.5 mm-wide cross section of the expanding aerosol. It could, for instance, be shown that NIR-ns-LA under quiescent argon atmosphere provokes the formation of a dense aerosol confined within a radially propagating vortex ring. The expansion dynamics achieved under these conditions were found to be fairly slow whereas the degree of aerosol dispersion for NIR-ns-LA using helium drastically increased due to its lower viscosity. As a consequence, the maximum diameter of expansion differed by a factor of approximately four. The trajectories of aerosol particles generated by NIR-ns-LA using argon could, furthermore, be simulated on the basis of computational fluid dynamics (CFD). For this purpose, a model inspired by the thermal character of NIR-ns-LA taking into account a sudden temperature build-up of 10,000 K at the position of the laser focus was implemented.  相似文献   

2.
The laser-induced breakdown spectroscopy technique is employed for compositional analyses of thin films produced by pulsed laser ablation of multielemental targets.Information about the atomic concentration of the chemical species from the irradiated target is inferred by means of the optical emission spectra of the plasma generated during laser ablation. The atomic concentration percentages and the atomic concentration ratios of the elements of Co-based magnetic alloy targets are deduced from the integrated intensities of selected emission lines of the alloy components.The experimental results show that Co atomic percentage concentration and CSi/CCo and CCr/CCo atomic concentration ratios are in agreement with the corresponding values obtained by traditional compositional analysis techniques. On the contrary, Si atomic percentage concentration values are in disagreement, since the used emission lines have significant self-absorption values.Therefore, the work proves that laser-induced breakdown spectroscopy is adequate for elemental concentration measurements provided an accurate choice of the emission lines.  相似文献   

3.
Large area compositional mapping (>6 mm2) using a fast and automated system based on laser-induced plasma spectrometry is presented. The second harmonic of a flat top Nd:YAG laser beam was used to generate a microline plasma on the sample surface. The emitted light from the microline plasma was imaged onto the entrance slit of an imaging spectrograph and was detected by an intensified charge-coupled device to generate a spatially and spectrally resolved data set. Individual LIPS images, each measuring roughly 2500×2500 μm with spatial resolution of 50 μm between adjacent craters and 4.8 μm along the microline are presented. These large area maps were acquired in less than 1 min. Steel samples containing MnS and TiN inclusions were chosen as the most adequate for this study. The results are presented for the characterization of inclusionary material in stainless steel products in terms of morphology, distribution and abundance.  相似文献   

4.
In this paper, we present the use of one of the self-modeling curve resolution techniques, band-target entropy minimization (BTEM), which is independent of any spectral library, to elucidate Raman pure component spectra of two different manganese oxides arising from laser-induced structural changes. It is often extremely difficult to obtain the pure Raman spectrum of MnO2 without changing it to another structural form. However, using BTEM to analyze the collected in situ Raman spectra measured as a function of laser exposure time, has enabled us to obtain both the pure component spectra of the original sample and the product due to laser irradiation. This technique proves to be an efficient Raman spectral interpretation method for thermal sensitive solid samples.  相似文献   

5.
Time-resolved Fourier-transform spectroscopy and two-color laser-induced grating spectroscopy are two new techniques recently employed in this laboratory. We recorded emission in the near infrared region during laser photolysis of HONO2 with a step-scan Fourier-transform spectrometer and achieved temporal resolution in the microsecond range and spectral resolution of 0.1 cm1. Rotationally resolved emission lines of the (0,0) band of the D 2+ →A 2+ transition of NO in the region 8900-9300 cnv?1 with irregular relative intensities were observed when an ArF excimer laser was used to photodissociate HONO2. The spectroscopic parameters of both D 2+ and A 2+ states agree with those previously reported. When a narrow-band ArF laser was used, selective rotational levels of the D state of NO were populated depending on the wavelength of the ArF laser. Our results indicate that absorption of a 193-nm photon by NO(υ″ = 1) is responsible for the observed emission. To test the technique of two-color laser-induced grating spectroscopy, we employed the B 3II0U+-X 1g + system of I2. Background-free spectra with transitions involving rotationally selected states were recorded. Various experimental schemes were employed with population gratings formed in either the B or X state. Signals due to different four-wave mixing schemes were distinguished by variation of relative timing between the grating beams and the probe beam.  相似文献   

6.

We use a comprehensive model to investigate the interaction of ultraviolet nanosecond laser pulses with a titanium material. We calculate plasma ignition thresholds and study the effect of the laser-plasma interaction and the importance of the electronic non-equilibrium in the laser-induced plume and its expansion in the background gas. Our calculations of plasma ignition thresholds on titanium targets are validated and compared with experimental and theoretical results. A comparison with experimental data indicates that our results agree well with those reported in the literature. Results for titanium and copper are also compared under the same conditions. The inclusion of electronic non-equilibrium in our work indicates that this important process must be included in laser ablation and plasma plume formation models.

  相似文献   

7.
We demonstrate laser induced ablation and plasma line emission from a metallic target at distances up to 180 m from the laser, using filaments (self-guided propagation structures ∼ 100 μm in diameter and ∼ 5 × 1013 W/cm2 in intensity) appearing as femtosecond and terawatt laser pulses propagating in air. The remarkable property of filaments to propagate over a long distance independently of the diffraction limit opens the frontier to long range operation of the laser-induced breakdown spectroscopy technique. We call this special configuration of remote laser-induced breakdown spectroscopy “remote filament-induced breakdown spectroscopy”. Our results show main features of filament-induced ablation on the surface of a metallic sample and associated plasma emission. Our experimental data allow us to estimate requirements for the detection system needed for kilometer-range remote filament-induced breakdown spectroscopy experiment.  相似文献   

8.
The temporal evolution and spatial distribution of C2 molecules produced by laser ablation of a graphite target is studied using optical emission spectroscopy, dynamic imaging and laser-induced fluorescence (LIF) investigations. We observe peculiar bifurcation of carbon plume into two parts; stationary component close to the target surface and a component moving away from the target surface which splits further in two parts as the plume expands. The two distinct plumes are attributed to recombination of carbon species and formation of nanoparticles. The molecular carbon C2 moves with a faster velocity and dies out at ~ 800 ns whereas the clusters of nanoparticle move with a slower velocity due to their higher mass and can be observed even after 1600 ns. C2 molecules in the d3Πg state were probed for laser-induced fluorescence during ablation of graphite using the Swan (0,0) band at 516.5 nm. The fluorescence spectrum and images of fluorescence d3Πg − a3Πu(0,1)(λ = 563.5 nm) are recorded using a spectrograph attached to the ICCD camera. To get absolute ground state C2 density from fluorescence images, the images are calibrated using complimentary absorption experiment. This study qualitatively helps to get optimum conditions for nanoparticle formation using the laser ablation of graphite target and hence deducing optimum conditions for thin film deposition.  相似文献   

9.
The characterization of laser-induced plasma from a glass sample was performed in the single- and double-pulse excitation regimes. The detailed information about density distributions of excited atoms and ions in the expanding plasma was obtained by using the imaging detection system providing measurements of the spatial, temporal, and spectral plasma emission characteristics. The expansion dynamics was shown to differ strongly between two excitation regimes. The enhancement factors of the line emissions in the double-pulse mode were found to be spatial dependent and to differ for the different elements in the plasma plume. The obtained results are useful for a better understanding of the main physical processes leading to the analytical improvement achieved by the use of double-pulse laser-induced breakdown spectroscopy (LIBS).  相似文献   

10.
Measurements of the local electron density in laser-induced plasma have been carried out from the Stark-broadened profiles of three reference lines (Hα, Fe I and Si II). The plasma has been generated from a Fe–Si sample in air using a Nd:YAG laser. Compatible values of the local electron density have been obtained from the three lines. The experiment is based on the use of an imaging spectrometer, the capability for spatial resolution of a charge-coupled device and the application of a spatial deconvolution procedure to the spectra. Distributions of the emission coefficient have been obtained, showing that the three lines are emitted from different regions of the plasma. The implications in the apparent electron density values obtained in spatially-integrated measurements are discussed: similar values are obtained for the Hα and Si II lines, while the Fe I line leads to a 25% lower value.  相似文献   

11.
Based on the results of quantitative spectroscopic diagnostics (LIF in combination with time resolved emission spectroscopy) chemical dynamics in laser-produced plasmas of metallic (Ti, Al,), and graphite samples have been examined. The Nd-YAG (1064 nm, 10 ns, 100 mJ) and excimer XeCl (308 nm, 10 ns, 10 mJ) lasers were employed for ablation. The main attention was focused on the elucidation of a role of oxide and dimer formation in controlling spatio-temporal distributions of different species in the ablation plume. The results of the spatial and temporal analysis of a laser-produced plasma in air indicates the existence of diatomic oxides in the ablation plume both in the ground and excited states, which are formed from reactions between ablated metal atoms and oxygen. The efficiency of the oxidation reaction depends on the intensity and spot diameter of the ablation laser beam. The maximal concentration of TiO molecules are estimated to be of 1×1014 cm−3 at the time of 10 μs after the start of the ablation pulse. A comparison of spatial–temporal distributions of Ti atoms and excited TiO molecules allow us to find a correlation in their change, which proves that electronically excited Ti oxides are most probably formed from oxidation of atoms in the ground and low lying metastable states. The spectroscopic characterization of pulsed laser ablation carbon plasma has also been performed. The time–space distributions as well as the high vibrational temperature of C2 molecules indicate that the dominant mechanism for production of C2 is the atomic carbon recombination.  相似文献   

12.
The plasma plume induced by dual-pulse laser ablation of a titanium target in vacuum was analyzed by the technique of cavity ringdown spectroscopy (CRDS). Large Doppler-splitting of the absorption spectral lines was observed which is due to increase of the velocity components parallel to the optical axis and specific features of the CRDS measurements. Vertical velocity component, the particle number density and plasma volume also show increase compared to the single-pulse laser ablation. The forward convolution best fit of absorption lineshapes was used to extract parameters describing dual-pulse laser ablation plasma plume.  相似文献   

13.
We performed temporal as well as frequency-resolved emission spectroscopy of the plasma plume generated in vacuum by 355 nm pulsed laser ablation of a LiYF4:Tm3+ crystal (1% Tm3+ concentration) and a LiYF4:Nd3+ crystal (1.5% Nd3+ concentration). The plume emission spectrum is very rich in features and shows the elemental lines belonging to all the components of the host lattice, either neutral or ionized. The time-resolved analysis of some emission features is discussed and some stream velocities are derived. A possible model for the time evolution of the plume components is reported. The electronic detection technique was used to detect the onset of the plasma plume and to measure the ablation laser fluence threshold.  相似文献   

14.
The atomic emission of laser-induced plasma on steel samples has been studied for quantitative elemental analysis. The plasma has been created with 8 ns wide pulses using the second-harmonic from a Q-switched Nd:YAG laser, in air at atmospheric pressure. The plasma emission is detected with temporal resolution, using an Echelle spectrometer of wide spectral range (300–900 nm) combined with an intensified charge coupled device camera. A plasma temperature of 7800 ± 400 K is determined using the Boltzmann plot method, from spectra obtained under optimized experimental conditions.As an example of an industrial application the concentration of copper in scrap metals is studied, which is an important factor to determine the quality of the samples to recycle. Cu concentrations down to 200 ppm can be detected. Another application of the laser-induced plasma spectroscopy method is the measurement of the nickel and copper concentrations in an iron-containing sample of reduced magma from the 1870s expedition to western Greenland by Adolf Erik Nordenskiöld. Different spectral lines of nickel are used for calibration, and their results are compared.  相似文献   

15.
Laser-induced breakdown spectroscopy of helium plasma, initially at room temperature and pressures ranging from 12 to 101 kPa was investigated using a transverse excitation atmospheric CO2 pulsed laser (λ = 9.621 and 10.591 μm, a full width at half maximum of 64 ns, and an intensity from 1.5 to 5.36 GW cm−2). The helium breakdown spectrum is mainly due to electronic relaxation of excited He, He+ and H. Plasma characteristics were examined in detail on the emission lines of He and He+ by the time-integrated and time-resolved optical emission spectroscopy technique. Optical breakdown threshold intensities, ionization degree and plasma temperatures were obtained. An auxiliary metal mesh target was used to analyze the temporal evolution of the species in the plasma. The results show a faster decay of the continuum emission and He+ species than in the case of neutral He atoms. The velocity and kinetic energy distributions for He and He+ species were obtained from time-of-flight measurements. Electron density in the laser-induced plasma was estimated from the analysis of spectral data at various times from the laser pulse incidence. Temporal evolution of electron density has been used for the estimation of the three-body electron-ion recombination rate constant.  相似文献   

16.
Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.  相似文献   

17.
Stable isotope analysis permits the tracking of physical, chemical, and biological reactions and source materials at a wide variety of spatial scales. We present a laser ablation isotope ratio mass spectrometry (LA‐IRMS) method that enables δ13C measurement of solid samples at 50 µm spatial resolution. The method does not require sample pre‐treatment to physically separate spatial zones. We use laser ablation of solid samples followed by quantitative combustion of the ablated particulates to convert sample carbon into CO2. Cryofocusing of the resulting CO2 coupled with modulation in the carrier flow rate permits coherent peak introduction into an isotope ratio mass spectrometer, with only 65 ng carbon required per measurement. We conclusively demonstrate that the measured CO2 is produced by combustion of laser‐ablated aerosols from the sample surface. We measured δ13C for a series of solid compounds using laser ablation and traditional solid sample analysis techniques. Both techniques produced consistent isotopic results but the laser ablation method required over two orders of magnitude less sample. We demonstrated that LA‐IRMS sensitivity coupled with its 50 µm spatial resolution could be used to measure δ13C values along a length of hair, making multiple sample measurements over distances corresponding to a single day's growth. This method will be highly valuable in cases where the δ13C analysis of small samples over prescribed spatial distances is required. Suitable applications include forensic analysis of hair samples, investigations of tightly woven microbial systems, and cases of surface analysis where there is a sharp delineation between different components of a sample. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, we have studied the main conditions that a laser-induced plasma must fulfill in order to be considered as adequate for the measurement of Stark broadening parameters. We investigated the effect of the temporal window, the self-absorption, the crater size, and the effect of the spatial inhomogeneity on the emission profiles coming from a laser-induced plasma. Starting from the spatially resolved values of the plasma parameters, obtained by emission spectroscopy, the error in the determination of the Stark electron width due to the spatial inhomogeneity has been estimated and, for the present experimental conditions, was found to be lower than 7%. As a test of the method, the Stark electron broadening constant of Fe I 381.58 nm has been measured using the Fe I 538.34 nm emission line as the reference to determine the electron density. The plasma was produced under a controlled atmosphere of argon at atmospheric pressure, on an iron–nickel alloy sample. The emission was collected by a system with high spectral resolution, for different temporal windows after the laser pulse. For time delays between 2.75 and 21 μs, the electron density showed an evolution in the range 2.0–0.13 × 1017 cm 3, while the temperature varied from 11 100 to 7100 K. The representation of the Stark electron width of Fe I 381.58 nm, measured for each temporal window, versus the Stark electron width of the reference line showed a linear behavior with a high correlation coefficient. From the slope of this linear fit and the Stark electron broadening constant of the reference line, the Stark width of Fe I 381.58 nm was obtained to be 1.10 ± 0.07 × 10 2 nm for an electron density of 1017 cm 3.  相似文献   

19.
Ground-state atomic hydrogen produced in radio-frequency plasma discharges (20 KHz-5 MHz) has been detectedin situ using two-photon absorption laser-induced fluorescence (TALIF). Atomic ground-state concentration measurements have demonstrated excellent spatial resolution in the interelectrode gap of a planar discharge configuration with 10 nsec temporal resolution at all phases of the RF driving voltage waveform. Concentrations were measured in gas mixtures of helium and hydrogen down to 2×1013 H atoms/cm3.  相似文献   

20.
Double-pulse femtosecond laser ablation has been shown to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to single-pulse ablation particularly when an appropriate interpulse delay is selected, that is typically in the range of 50–1000 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy analysis of materials. A detailed comparative study of collinear double- over single-pulse femtosecond laser-induced breakdown spectroscopy has been carried out, based on measurements of emission lifetime, temperature and electronic density of plasmas, produced during laser ablation of brass with 450 fs laser pulses at 248 nm. The results obtained show a distinct increase of plasma temperature and electronic density as well as a longer decay time in the double-pulse case. The plasma temperature increase is in agreement with the observed dependence of the emission intensity enhancement on the upper energy level of the corresponding spectral line. Namely, intensity enhancement of emission lines originating from higher lying levels is more profound compared to that of lines arising from lower energy levels. Finally, a substantial decrease of the plasma threshold fluence was observed in the double-pulse arrangement; this enables sensitive analysis with minimal damage on the sample surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号