首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The radiation-chemical decomposition of n-hexane in the Al-n-hexane system under the action of gamma radiation was studied by reflectance-absorption IR spectroscopy. The radiolysis of n-hexane on the surface of aluminum at absorbed doses of 5 kGy ≤ D γ ≤ 40 kGy was accompanied by the formation of aluminum alkyls, π-complexes of olefins, and aluminum hydrides. The kinetics of the accumulation of molecular hydrogen was analyzed to determine its radiation-chemical yield, G ads (H2) = 29.6 molecules/100 eV. A possible mechanism of this process is discussed.  相似文献   

2.
The synthesis of high-value multi-carbon products through the electrochemical reduction of carbon monoxide(COER) is one of the promising avenues for carbon utilization and energy storage,in which searching for efficient electrocatalysts that exhibit moderate CO intermediate binding strength and low kinetic barrier for C-C coupling is a key issue.Herein,by means of comprehensive density functional theory(DFT) computations,we theoretically designed three synergistic coupling catalysts by co-doping...  相似文献   

3.
Hydrogen energy(H2) has been considered as the most possible consummate candidates for replacing the traditional fossil fuels because of its higher combustion heat value and lower environmental pollution.Photocatalytic hydrogen evolution(PHE) from water splitting based on semiconductors is a promising technology towards converting solar energy into sustainable H2fuel evolution. Developing high-activity and abundant source semiconductor materials is particularly important to realize highly effici...  相似文献   

4.
Transition metal phosphide is regarded as one of the most promising candidates to replace noble-metal hydrogen evolution reaction (HER) electrocatalysts. Nevertheless, the controllable design and synthesis of transition metal phosphide electrocatalysts with efficient and stable electrochemical performance are still very challenging. Herein, a novel hierarchical HER electrocatalyst consisting of three-dimensional (3D) coral-like Mn-doped Co2P@an intermediate layer of Ni2P generated in situ by phosphorization on Ni foam (MnCoP/NiP/NF) is reported. Notably, both the incorporation of Mn and introduction of the Ni2P interlayer promote Co atoms to carry more electrons, which is beneficial to reduce the force of the Co−H bond and optimize the adsorption energy of hydrogen intermediate (|ΔGH*|), thereby making MnCoP/NiP/NF exhibit outstanding HER performance with onset overpotential and Tafel slope as low as 31.2 mV and 61 mV dec−1, respectively, in 1 m KOH electrolyte.  相似文献   

5.
《中国化学快报》2023,34(6):107643
Two-dimensional electride Ca2N has strong electron transfer ability and low work function, which is a potential candidate for hydrogen evolution reaction (HER) catalyst. In this work, based on density functional theory calculations, we adopt two strategies to improve the HER catalytic activity of Ca2N monolayer: introducing Ca or N vacancy and doping transition metal atoms (TM, refers to Ti, V, Cr, Mn, Fe, Zr, Nb, Mo, Ru, Hf, Ta and W). Interestingly, the Gibbs free energy ΔGH1 of Ca2N monolayer after introducing N vacancy is reduced to -0.146 eV, showing good HER catalytic activity. It is highlighted that, the HER catalytic activity of Ca2N monolayer can be further enhanced with TM doping, the Gibbs free energy ΔGH1 of single Mo and double Mn doped Ca2N are predicted to be 0.119 and 0.139 eV, respectively. The present results will provide good theoretical guidance for the HER catalysis applications of two-dimensional electride Ca2N monolayer.  相似文献   

6.
《中国化学快报》2023,34(6):107659
The electrochemical nitrogen reduction reaction (NRR) for the ammonia production under ambient conditions is regarded as a sustainable alternative to the industrial Haber–Bosch process. However, the electrocatalytic systems that efficiently catalyze nitrogen reduction remain elusive. In the work, the nitrogen reduction activity of the transition metal decorated bismuthene TM@Bis is fully investigated by means of density functional theory calculations. Our results demonstrate that W@Bis delivers the best efficiency, wherein the potential-determining step is located at the last protonation step of *NH2 + H+ + e → *NH3 via the distal mechanism with the limiting potential UL of 0.26 V. Furthermore, the dopants of Re and Os are also promising candidates for experimental synthesis due to its good selectivity, in despite of the slightly higher UL of NRR with the value of 0.55 V. However, the candidates of Ti, V, Nb and Mo delivered the relative lower UL of 0.35, 0.37, 0.41 and 0.43 V might be suffered from the side hydrogen evolution reaction. More interestingly, a volcano curve is established between UL and valence electrons of metal elements wherein W with 4 electrons in d band located at the summit. Such phenomenon originates from the underlying acceptance-back donation mechanism. Therefore, our work provides a fundament understanding for the material design for nitrogen reduction electrocatalysis.  相似文献   

7.
Absolute ionization rate constant values of hydrogen and deuterium atoms adsorbed on mercury were measured using the method of pulse photoelectronic emission from metal into solution. In accordance with the Tafel law, these constants decrease from 2.5×107s?1 to 9×105s?1 (Table 1) in a 1 M solution of KCl in the range ?0.25 to ?0.5 V SCE. The transfer coefficient is 0.33±0.03 and the isotope ratio about 2.5. Owing to specific anion adsorption, rate constants increase as their concentration increases and KBr is added to the solution. In 0.05 M solutions of HCl and H2SO4, transfer coefficients are 0.30±0.05. From a comparison of measured values, with the hydrogen ion discharge rate constants found by extrapolation of experimental values into the potential range mentioned (taking into account the transfer coefficient change), the change of the Gibbs free energy in the reaction H3O++eMe?→Hads+H2O was calculated and found to be 0.87–0.99 eV at the potential of the normal hydrogen electrode. Adsorption energy of the hydrogen atom from the gas phase on a mercury electrode is 1.55±0.10 eV.The volt-ampere dependence of the hydrogen ion discharge current in the range ?0.25 to ?2.25 V corresponding to the current change by 18 orders of magnitude, agrees with the theoretically determined values (maximum deviation in the current is less than a factor of 3) for the medium reorganization energy Er=1.75 eV. Despite constancy of the transfer coefficients of the elementary stages, in the range ?0.5 V (SCE), the effective transfer coefficient of the total hydrogen evolution processes increases from 0.5 to 1.0, as the ionization rate of the adsorbed hydrogen atoms becomes greater than their electrochemical desorption rate.  相似文献   

8.
To address the urgent need for clean and sustainable energy, the rapid development of hydrogen‐based technologies has started to revolutionize the use of earth‐abundant noble‐metal‐free catalysts for the hydrogen evolution reaction (HER). Like the active sites of hydrogenases, the cation sites of pyrite‐type transition‐metal dichalcogenides have been suggested to be active in the HER. Herein, we synthesized electrodes based on a Se‐enriched NiSe2 nanosheet array and explored the relationship between the anion sites and the improved hydrogen evolution activity through theoretical and experimental studies. The free energy for atomic hydrogen adsorption is much lower on the Se sites (0.13 eV) than on the Ni sites (0.87 eV). Notably, this electrode benefits from remarkable kinetic properties, with a small overpotential of 117 mV at 10 mA cm?2, a low Tafel slope of 32 mV per decade, and excellent stability. Control experiments showed that the efficient conversion of H+ into H2 is due to the presence of an excess of selenium in the NiSe2 nanosheet surface.  相似文献   

9.
Electroreduction of Se(+4) and electrooxidation of Se(?2) were studied at mercury electrodes in acidic media and an improved mechanism of the reduction process was proposed. This mechanism takes into account the fact that the reduction path is concentration-dependent. At lower concentrations of Se(+4), mercury selenide and hydrogen selenide are formed at various potentials. At higher Se(+4) concentrations the electrode quickly becomes covered by a rigid deposit of mercury selenide and then the reduction starts to proceed to elemental selenium. Another form of selenium was formed in the vicinity of the mercury surface due to a chemical reaction between H2SeO3 and H2Se. Oxidation of hydrogen selenide proceeds similarly, in the sense that after coverage of the electrode surface by a deposit of mercury selenide the oxidation starts to proceed to elemental selenium. The cathodic stripping peak of mercury selenide can be obtained down to 2 × 10?8M of Se(+4), but this peak is often split and therefore the determination of traces of Se(+4) by the cathodic stripping technique is cumbersome.  相似文献   

10.
Based on van der Waals corrected density functional theory, we show that Na atoms acting as decoration metals are not inclined to form clusters due to a large binding energy of 3.31 eV, indicating a promising good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 4.4 wt%) with optimal adsorption energy of 0.25 eV/H2. Additionally, the dimerization of these isolated B36 does not remarkably affect the number of adsorbed H2 per Na atom. Our results may serve as a guide in the design of new hydrogen storage materials based on low-dimension boron clusters.  相似文献   

11.
Diffusion Monte Carlo (DMC) simulations were used to calculate the binding energies for hydrogen molecules adsorbed on the lithium metal–organic complex C4H3Li. The calculations use all‐electron DMC techniques where every electron is explicitly included in the simulation. Also we have systematically studied it using density functional theory (DFT) methods, revealing that each C4H3Li can hold up to four H2 molecules and the adsorption distance is about 2.2 Å. The DMC binding energies are in the range of 0.055–0.143 eV and are compared with those obtained with DFT using various exchange‐correlation functionals, with values ranging from 0.029 to 0.504 eV. These results indicate that caution is required applying DFT methods to weakly bound systems such as hydrogen storage materials based on lithium‐doped metal–organic frameworks. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

12.
Finite saturated regular carbon nanotubes (CNTs) are predicted to exhibit higher capacity as hydrogen storage media compared to unsaturated regular CNTs. In the present study, molecular hydrogen physisorption energies (MHPEs) for finite saturated and unsaturated bumpy defected CNTs were calculated by density functional theory (DFT-D3) methods at the B3LYP/6-31G(d) theory level, with rigorous inclusion of van der Waals interactions. The calculated MHPEs for both regular and bumpy defected armchair, chiral and zigzag CNTs with similar diameters and lengths, with and without nitrogen doping, were compared in terms of Eph/H2, defined as the MHPE per hydrogen molecule adsorbed inside the nanotube. For all studied systems, Eph/H2 increased with the number of physisorbed hydrogen molecules. Nitrogen doping of regular and bumpy CNTs resulted in an increase in the Eph/H2 values, with the exception of bumpy chiral nanotubes. The results of this study demonstrate that bumpy defects are important nanotube structural features whose effects depend on nanotube chirality. For instance, bumpy defects were beneficial for undoped and doped zigzag nanotubes, resulting in a decrease in Eph/H2 values for regular structures from 0.5 and 0.74 to 0.26 and 0.42 eV, respectively. By contrast, for doped armchair regular structures with an Eph/H2 value of 0.38 eV, bumpy defects increased Eph/H2 to 0.45 eV. These Eph/H2 values for bumpy doped armchair and the zigzag nanotubes are all within the range of 0.1–0.5 eV/H2 reported as ideal for reversible hydrogen storage under environmental conditions.  相似文献   

13.
Using density functional theory, the generalized gradient approximation for the exchange‐correlation potential and Møller–Plesset perturbation theory we study the hydrogen uptake of Li‐ and Mg‐doped boranes. Specifically, we calculate the structures and binding energies of hydrogen molecules sequentially attached to LiB6H7, LiB12H13, Li2B6H6, Li2B12H12, MgB6H6, and MgB12H12. Up to three H2 molecules can be bound quasi‐molecularly to each of the metal cations with binding energies per H2 molecule ranging between 0.07 eV and 0.27 eV. The corresponding gravimetric densities lie in the range of 3.49 to 12 wt %, not counting the H atoms bound chemically to the B atoms.  相似文献   

14.
《Arabian Journal of Chemistry》2020,13(11):8301-8308
Hydrogen peroxide (H2O2) is one of the most promising, green, and effective oxidants that can be used in different applications. In this study, zeolitic imidazolate frameworks (ZIFs), consisting of organic ligands and metal sites, were selectively prepared from zinc or nickel nitrate solutions for use in photocatalytic H2O2 production. High concentrations of zinc nitrate solution provided more metal sites to coordinate with 2-methylimidazole, producing ZIF-8 with larger particle size, whereas low zinc nitrate concentrations resulted in more interconnected N–H⋯N hydrogen bonds, forming 2D-layered ZIF-L, with smaller particle size. Various concentrations of zinc and nickel nitrate solutions produced ZIFs that exhibited ZIF-8 or ZIF-L topology, with bandgap energies of 5.45 and 4.85 eV, respectively. These samples could serve as promising photocatalyst for the successful production of H2O2 under Xenon lamp irradiation.  相似文献   

15.
Graphene-based materials are promising for hydrogen production and storage. In this work, using density functional theory calculations, we explored how a hydroxyl group influences H2 dissociation on graphene. Presence of the hydroxyl group makes the binding of H atom with graphene stronger, as the binding energy of H atom with the hydroxyl-modified graphene is higher than that with the pristine graphene. The para-site is the most favorable site for H2 dissociation on both the pristine and hydroxyl-modified graphene. The energy barrier of H2 dissociation at para-site on the pristine graphene is 3.10 eV whereas that on the hydroxyl-modified graphene is 2.46 eV, indicating a more facile H2 dissociation on the hydroxyl-modified graphene.  相似文献   

16.
The electrochemical activity of solid-state heterostructures containing a hydrogenated metal and a solid proton conductor is investigated in the temperature ranges of 360–458 K, 360–370 K, and 320–420 K. The eutectics KOH/NaOH or KOH/KOH · H2O and the chemical compound KOH · H2O were chosen as the proton conductor. The conductivity of these electrolytes is higher than 1 mS/cm and their activation energies lower than 0.4 eV. Proton conductivity of the electrolytes is established by the emf method and confirmed by the isotope effect (H?D) in the conductivities of KOH · H2O and the high-temperature form of KOH/NaOH (the protium forms are ≈1.4 times higher). Anomalies in the temperature dependence of conductivity and heat capacity are characteristic of eutectics in the region of 360 ± 1 K, and this has an effect on the electrochemical properties of the PdH x |KOH/NaOH|PdO y and TiH x |KOH · H2O|C heterostructures. Transport of atomic particles of hydrogen—most likely protons—across (Pd/Ti)H x |MOH heteroboundaries where MOH = KOH · H2O, KOH/NaOH, KOH/KOH · H2O has a reversible character, which is shown by isotope and impedance measurements. The importance of the self-organized microheterogeneous solid eutectics KOH/NaOH and KOH/KOH · H2O for their high conductivity compared to NaOH, KOH, and KOH · H2O taken individually is discussed.  相似文献   

17.
To reduce the greenhouse effect caused by the surgery of nitrogen-oxides concentration in the atmosphere and develop a future energy carrier of renewables, it is very critical to develop more efficient,controllable, and highly sensitive catalytic materials. In our work, we proposed that nitric oxide(NO), as a supplement to N2 for the synthesis of ammonia, which is equipped with a lower barrier. And the study highlighted the potential of CeO2(111) nanosheets with La doping a...  相似文献   

18.
19.
Molybdenum disulfide (MoS2) has been regarded as one of the most promising candidates for replacing Pt group noble metals as an efficient electrocatalyst to enhance the hydrogen evolution reaction (HER) in consideration of its relatively high earth abundance. Recent studies show that the catalytic efficiency of MoS2 for HER can be promoted by the presence of 1T-phase MoS2. It is hard to precisely control the formation of 1T-MoS2, however, due to its metastability relative to 2H-MoS2. Elevating the stability of 1T phase allotrope is therefore of great importance and could be realized by replacing divalent S with monovalent elements or groups according to crystal field theory, which has been demonstrated through our first-principles density functional theory (DFT) calculation results. Differential Gibbs free energy analysis for hydrogen adsorption (ΔGH*) suggest that 1T and 1T′ MoSO (O doped MoS2) might be taken as potential candidate catalysts for HER process with better performance than 1T and 1T′ MoS2. We also propose a probable approach to synthesize 1T and 1T′ MoSO under oxidation circumstance environment of graphene oxide.  相似文献   

20.
Although electrocatalysts based on transition metal phosphides (TMPs) with cationic/anionic doping have been widely studied for hydrogen evolution reaction (HER), the origin of performance enhancement still remains elusive mainly due to the random dispersion of dopants. Herein, we report a controllable partial phosphorization strategy to generate CoP species within the Co‐based metal‐organic framework (Co‐MOF). Density functional theory calculations and experimental results reveal that the electron transfer from CoP to Co‐MOF through N‐P/N‐Co bonds could lead to the optimized adsorption energy of H2O (ΔG ) and hydrogen (ΔGH*), which, together with the unique porous structure of Co‐MOF, contributes to the remarkable HER performance with an overpotential of 49 mV at a current density of 10 mA cm?2 in 1 m phosphate buffer solution (PBS, pH 7.0). The excellent catalytic performance exceeds almost all the documented TMP‐based and non‐noble‐metal‐based electrocatalysts. In addition, the CoP/Co‐MOF hybrid also displays Pt‐like performance in 0.5 m H2SO4 and 1 m KOH, with the overpotentials of 27 and 34 mV, respectively, at a current density of 10 mA cm?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号